e8426f6662
Thanks to John Horne who diagnosed this issue and found the problem.
402 lines
12 KiB
C
402 lines
12 KiB
C
/* tinyproxy - A fast light-weight HTTP proxy
|
|
* Copyright (C) 2000, 2002 Robert James Kaes <rjkaes@users.sourceforge.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*/
|
|
|
|
/* This system handles Access Control for use of this daemon. A list of
|
|
* domains, or IP addresses (including IP blocks) are stored in a list
|
|
* which is then used to compare incoming connections.
|
|
*/
|
|
|
|
#include "main.h"
|
|
|
|
#include "acl.h"
|
|
#include "heap.h"
|
|
#include "log.h"
|
|
#include "network.h"
|
|
#include "sock.h"
|
|
#include "vector.h"
|
|
|
|
#include <limits.h>
|
|
|
|
/* Define how long an IPv6 address is in bytes (128 bits, 16 bytes) */
|
|
#define IPV6_LEN 16
|
|
|
|
enum acl_type {
|
|
ACL_STRING,
|
|
ACL_NUMERIC
|
|
};
|
|
|
|
/*
|
|
* Hold the information about a particular access control. We store
|
|
* whether it's an ALLOW or DENY entry, and also whether it's a string
|
|
* entry (like a domain name) or an IP entry.
|
|
*/
|
|
struct acl_s {
|
|
acl_access_t access;
|
|
enum acl_type type;
|
|
union {
|
|
char *string;
|
|
struct {
|
|
unsigned char network[IPV6_LEN];
|
|
unsigned char mask[IPV6_LEN];
|
|
} ip;
|
|
} address;
|
|
};
|
|
|
|
/*
|
|
* Fills in the netmask array given a numeric value.
|
|
*
|
|
* Returns:
|
|
* 0 on success
|
|
* -1 on failure (invalid mask value)
|
|
*
|
|
*/
|
|
static int
|
|
fill_netmask_array (char *bitmask_string, int v6,
|
|
unsigned char array[], size_t len)
|
|
{
|
|
unsigned int i;
|
|
unsigned long int mask;
|
|
char *endptr;
|
|
|
|
errno = 0; /* to distinguish success/failure after call */
|
|
mask = strtoul (bitmask_string, &endptr, 10);
|
|
|
|
/* check for various conversion errors */
|
|
if ((errno == ERANGE && mask == ULONG_MAX)
|
|
|| (errno != 0 && mask == 0) || (endptr == bitmask_string))
|
|
return -1;
|
|
|
|
if (v6 == 0) {
|
|
/* The mask comparison is done as an IPv6 address, so
|
|
* convert to a longer mask in the case of IPv4
|
|
* addresses. */
|
|
mask += 12 * 8;
|
|
}
|
|
|
|
/* check valid range for a bit mask */
|
|
if (mask > (8 * len))
|
|
return -1;
|
|
|
|
/* we have a valid range to fill in the array */
|
|
for (i = 0; i != len; ++i) {
|
|
if (mask >= 8) {
|
|
array[i] = 0xff;
|
|
mask -= 8;
|
|
} else if (mask > 0) {
|
|
array[i] = (unsigned char) (0xff << (8 - mask));
|
|
mask = 0;
|
|
} else {
|
|
array[i] = 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* If the access list has not been set up, create it.
|
|
*/
|
|
static int init_access_list(vector_t *access_list)
|
|
{
|
|
if (!*access_list) {
|
|
*access_list = vector_create ();
|
|
if (!*access_list) {
|
|
log_message (LOG_ERR,
|
|
"Unable to allocate memory for access list");
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Inserts a new access control into the list. The function will figure out
|
|
* whether the location is an IP address (with optional netmask) or a
|
|
* domain name.
|
|
*
|
|
* Returns:
|
|
* -1 on failure
|
|
* 0 otherwise.
|
|
*/
|
|
int
|
|
insert_acl (char *location, acl_access_t access_type, vector_t *access_list)
|
|
{
|
|
struct acl_s acl;
|
|
int ret;
|
|
char *p, ip_dst[IPV6_LEN];
|
|
|
|
assert (location != NULL);
|
|
|
|
ret = init_access_list(access_list);
|
|
if (ret != 0) {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Start populating the access control structure.
|
|
*/
|
|
memset (&acl, 0, sizeof (struct acl_s));
|
|
acl.access = access_type;
|
|
|
|
/*
|
|
* Check for a valid IP address (the simplest case) first.
|
|
*/
|
|
if (full_inet_pton (location, ip_dst) > 0) {
|
|
acl.type = ACL_NUMERIC;
|
|
memcpy (acl.address.ip.network, ip_dst, IPV6_LEN);
|
|
memset (acl.address.ip.mask, 0xff, IPV6_LEN);
|
|
} else {
|
|
int i;
|
|
|
|
/*
|
|
* At this point we're either a hostname or an
|
|
* IP address with a slash.
|
|
*/
|
|
p = strchr (location, '/');
|
|
if (p != NULL) {
|
|
char dst[sizeof(struct in6_addr)];
|
|
int v6;
|
|
|
|
/*
|
|
* We have a slash, so it's intended to be an
|
|
* IP address with mask
|
|
*/
|
|
*p = '\0';
|
|
if (full_inet_pton (location, ip_dst) <= 0)
|
|
return -1;
|
|
|
|
acl.type = ACL_NUMERIC;
|
|
|
|
/* Check if the IP address before the netmask is
|
|
* an IPv6 address */
|
|
if (inet_pton(AF_INET6, location, dst) > 0)
|
|
v6 = 1;
|
|
else
|
|
v6 = 0;
|
|
|
|
if (fill_netmask_array
|
|
(p + 1, v6, &(acl.address.ip.mask[0]), IPV6_LEN)
|
|
< 0)
|
|
return -1;
|
|
|
|
for (i = 0; i < IPV6_LEN; i++)
|
|
acl.address.ip.network[i] = ip_dst[i] &
|
|
acl.address.ip.mask[i];
|
|
} else {
|
|
/* In all likelihood a string */
|
|
acl.type = ACL_STRING;
|
|
acl.address.string = safestrdup (location);
|
|
if (!acl.address.string)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
ret = vector_append (*access_list, &acl, sizeof (struct acl_s));
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function is called whenever a "string" access control is found in
|
|
* the ACL. From here we do both a text based string comparison, along with
|
|
* a reverse name lookup comparison of the IP addresses.
|
|
*
|
|
* Return: 0 if host is denied
|
|
* 1 if host is allowed
|
|
* -1 if no tests match, so skip
|
|
*/
|
|
static int
|
|
acl_string_processing (struct acl_s *acl,
|
|
const char *ip_address, const char *string_address)
|
|
{
|
|
int match;
|
|
struct addrinfo hints, *res, *ressave;
|
|
size_t test_length, match_length;
|
|
char ipbuf[512];
|
|
|
|
assert (acl && acl->type == ACL_STRING);
|
|
assert (ip_address && strlen (ip_address) > 0);
|
|
assert (string_address && strlen (string_address) > 0);
|
|
|
|
/*
|
|
* If the first character of the ACL string is a period, we need to
|
|
* do a string based test only; otherwise, we can do a reverse
|
|
* lookup test as well.
|
|
*/
|
|
if (acl->address.string[0] != '.') {
|
|
memset (&hints, 0, sizeof (struct addrinfo));
|
|
hints.ai_family = AF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
if (getaddrinfo (acl->address.string, NULL, &hints, &res) != 0)
|
|
goto STRING_TEST;
|
|
|
|
ressave = res;
|
|
|
|
match = FALSE;
|
|
do {
|
|
get_ip_string (res->ai_addr, ipbuf, sizeof (ipbuf));
|
|
if (strcmp (ip_address, ipbuf) == 0) {
|
|
match = TRUE;
|
|
break;
|
|
}
|
|
} while ((res = res->ai_next) != NULL);
|
|
|
|
freeaddrinfo (ressave);
|
|
|
|
if (match) {
|
|
if (acl->access == ACL_DENY)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
STRING_TEST:
|
|
test_length = strlen (string_address);
|
|
match_length = strlen (acl->address.string);
|
|
|
|
/*
|
|
* If the string length is shorter than AC string, return a -1 so
|
|
* that the "driver" will skip onto the next control in the list.
|
|
*/
|
|
if (test_length < match_length)
|
|
return -1;
|
|
|
|
if (strcasecmp
|
|
(string_address + (test_length - match_length),
|
|
acl->address.string) == 0) {
|
|
if (acl->access == ACL_DENY)
|
|
return 0;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
/* Indicate that no tests succeeded, so skip to next control. */
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Compare the supplied numeric IP address with the supplied ACL structure.
|
|
*
|
|
* Return:
|
|
* 1 IP address is allowed
|
|
* 0 IP address is denied
|
|
* -1 neither allowed nor denied.
|
|
*/
|
|
static int check_numeric_acl (const struct acl_s *acl, const char *ip)
|
|
{
|
|
uint8_t addr[IPV6_LEN], x, y;
|
|
int i;
|
|
|
|
assert (acl && acl->type == ACL_NUMERIC);
|
|
assert (ip && strlen (ip) > 0);
|
|
|
|
if (full_inet_pton (ip, &addr) <= 0)
|
|
return -1;
|
|
|
|
for (i = 0; i != IPV6_LEN; ++i) {
|
|
x = addr[i] & acl->address.ip.mask[i];
|
|
y = acl->address.ip.network[i];
|
|
|
|
/* If x and y don't match, the IP addresses don't match */
|
|
if (x != y)
|
|
return -1;
|
|
}
|
|
|
|
/* The addresses match, return the permission */
|
|
return (acl->access == ACL_ALLOW);
|
|
}
|
|
|
|
/*
|
|
* Checks whether a connection is allowed.
|
|
*
|
|
* Returns:
|
|
* 1 if allowed
|
|
* 0 if denied
|
|
*/
|
|
int check_acl (const char *ip, const char *host, vector_t access_list)
|
|
{
|
|
struct acl_s *acl;
|
|
int perm = 0;
|
|
size_t i;
|
|
|
|
assert (ip != NULL);
|
|
assert (host != NULL);
|
|
|
|
/*
|
|
* If there is no access list allow everything.
|
|
*/
|
|
if (!access_list)
|
|
return 1;
|
|
|
|
for (i = 0; i != (size_t) vector_length (access_list); ++i) {
|
|
acl = (struct acl_s *) vector_getentry (access_list, i, NULL);
|
|
switch (acl->type) {
|
|
case ACL_STRING:
|
|
perm = acl_string_processing (acl, ip, host);
|
|
break;
|
|
|
|
case ACL_NUMERIC:
|
|
if (ip[0] == '\0')
|
|
continue;
|
|
perm = check_numeric_acl (acl, ip);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check the return value too see if the IP address is
|
|
* allowed or denied.
|
|
*/
|
|
if (perm == 0)
|
|
break;
|
|
else if (perm == 1)
|
|
return perm;
|
|
}
|
|
|
|
/*
|
|
* Deny all connections by default.
|
|
*/
|
|
log_message (LOG_NOTICE, "Unauthorized connection from \"%s\" [%s].",
|
|
host, ip);
|
|
return 0;
|
|
}
|
|
|
|
void flush_access_list (vector_t access_list)
|
|
{
|
|
struct acl_s *acl;
|
|
size_t i;
|
|
|
|
if (!access_list) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We need to free allocated data hanging off the acl entries
|
|
* before we can free the acl entries themselves.
|
|
* A hierarchical memory system would be great...
|
|
*/
|
|
for (i = 0; i != (size_t) vector_length (access_list); ++i) {
|
|
acl = (struct acl_s *) vector_getentry (access_list, i, NULL);
|
|
if (acl->type == ACL_STRING) {
|
|
safefree (acl->address.string);
|
|
}
|
|
}
|
|
|
|
vector_delete (access_list);
|
|
}
|