sigar/src/os/darwin/darwin_sigar.c

2142 lines
51 KiB
C

/*
* Copyright (C) [2004, 2005, 2006], Hyperic, Inc.
* This file is part of SIGAR.
*
* SIGAR is free software; you can redistribute it and/or modify
* it under the terms version 2 of the GNU General Public License as
* published by the Free Software Foundation. This program is distributed
* in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
* USA.
*/
#include "sigar.h"
#include "sigar_private.h"
#include "sigar_util.h"
#include "sigar_os.h"
#ifdef DARWIN
#include <mach/mach_init.h>
#include <mach/message.h>
#include <mach/kern_return.h>
#include <mach/mach_host.h>
#include <mach/mach_traps.h>
#include <mach/mach_port.h>
#include <mach/task.h>
#include <mach/vm_map.h>
#include <mach/shared_memory_server.h>
#else
#include <sys/dkstat.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/user.h>
#include <sys/vmmeter.h>
#include <fcntl.h>
#endif
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <dirent.h>
#include <errno.h>
#define NMIB(mib) (sizeof(mib)/sizeof(mib[0]))
#ifdef __FreeBSD__
# if (__FreeBSD_version >= 500013)
# define SIGAR_FREEBSD5
# else
# define SIGAR_FREEBSD4
# endif
#endif
#ifdef SIGAR_FREEBSD5
#define KI_FD ki_fd
#define KI_PID ki_pid
#define KI_PPID ki_ppid
#define KI_PRI ki_pri.pri_user
#define KI_NICE ki_nice
#define KI_COMM ki_comm
#define KI_STAT ki_stat
#define KI_UID ki_ruid
#define KI_GID ki_rgid
#define KI_EUID ki_svuid
#define KI_EGID ki_svgid
#define KI_SIZE ki_size
#define KI_RSS ki_rssize
#define KI_TSZ ki_tsize
#define KI_DSZ ki_dsize
#define KI_SSZ ki_ssize
#define KI_FLAG ki_flag
#define KI_START ki_start
#else
#define KI_FD kp_proc.p_fd
#define KI_PID kp_proc.p_pid
#define KI_PPID kp_eproc.e_ppid
#define KI_PRI kp_proc.p_priority
#define KI_NICE kp_proc.p_nice
#define KI_COMM kp_proc.p_comm
#define KI_STAT kp_proc.p_stat
#define KI_UID kp_eproc.e_pcred.p_ruid
#define KI_GID kp_eproc.e_pcred.p_rgid
#define KI_EUID kp_eproc.e_pcred.p_svuid
#define KI_EGID kp_eproc.e_pcred.p_svgid
#define KI_SIZE XXX
#define KI_RSS kp_eproc.e_vm.vm_rssize
#define KI_TSZ kp_eproc.e_vm.vm_tsize
#define KI_DSZ kp_eproc.e_vm.vm_dsize
#define KI_SSZ kp_eproc.e_vm.vm_ssize
#define KI_FLAG kp_eproc.e_flag
#define KI_START kp_proc.p_starttime
#endif
#ifndef DARWIN
#define PROCFS_STATUS(status) \
((((status) != SIGAR_OK) && !sigar->proc_mounted) ? \
SIGAR_ENOTIMPL : status)
static int get_koffsets(sigar_t *sigar)
{
int i;
struct nlist klist[] = {
{ "_cp_time" },
{ "_cnt" },
{ NULL }
};
if (!sigar->kmem) {
return SIGAR_EPERM_KMEM;
}
kvm_nlist(sigar->kmem, klist);
if (klist[0].n_type == 0) {
return errno;
}
for (i=0; i<KOFFSET_MAX; i++) {
sigar->koffsets[i] = klist[i].n_value;
}
return SIGAR_OK;
}
static int kread(sigar_t *sigar, void *data, int size, long offset)
{
if (!sigar->kmem) {
return SIGAR_EPERM_KMEM;
}
if (kvm_read(sigar->kmem, offset, data, size) != size) {
return errno;
}
return SIGAR_OK;
}
#endif
int sigar_os_open(sigar_t **sigar)
{
int mib[2];
int ncpu;
size_t len;
struct timeval boottime;
#ifndef DARWIN
struct stat sb;
#endif
len = sizeof(ncpu);
mib[0] = CTL_HW;
mib[1] = HW_NCPU;
if (sysctl(mib, NMIB(mib), &ncpu, &len, NULL, 0) < 0) {
return errno;
}
len = sizeof(boottime);
mib[0] = CTL_KERN;
mib[1] = KERN_BOOTTIME;
if (sysctl(mib, NMIB(mib), &boottime, &len, NULL, 0) < 0) {
return errno;
}
*sigar = malloc(sizeof(**sigar));
#ifdef DARWIN
(*sigar)->mach_port = mach_host_self();
#else
(*sigar)->kmem = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL);
if (stat("/proc/curproc", &sb) < 0) {
(*sigar)->proc_mounted = 0;
}
else {
(*sigar)->proc_mounted = 1;
}
#endif
#ifndef DARWIN
get_koffsets(*sigar);
#endif
(*sigar)->ncpu = ncpu;
(*sigar)->boot_time = boottime.tv_sec; /* XXX seems off a bit */
(*sigar)->pagesize = getpagesize();
#ifdef __FreeBSD__
(*sigar)->ticks = 100; /* sysconf(_SC_CLK_TCK) == 128 !? */
#endif
(*sigar)->last_pid = -1;
(*sigar)->pinfo = NULL;
return SIGAR_OK;
}
int sigar_os_close(sigar_t *sigar)
{
if (sigar->pinfo) {
free(sigar->pinfo);
}
#ifndef DARWIN
if (sigar->kmem) {
kvm_close(sigar->kmem);
}
#endif
free(sigar);
return SIGAR_OK;
}
char *sigar_os_error_string(sigar_t *sigar, int err)
{
switch (err) {
case SIGAR_EPERM_KMEM:
return "Failed to open /dev/kmem for reading";
case SIGAR_EPROC_NOENT:
return "/proc filesystem is not mounted";
default:
return NULL;
}
}
int sigar_mem_get(sigar_t *sigar, sigar_mem_t *mem)
{
#ifdef DARWIN
vm_statistics_data_t vmstat;
kern_return_t status;
mach_msg_type_number_t count = sizeof(vmstat) / sizeof(integer_t);
uint64_t value64;
#else
unsigned long value;
#endif
int mib[2];
size_t len;
mib[0] = CTL_HW;
mib[1] = HW_PAGESIZE;
len = sizeof(sigar->pagesize);
if (sysctl(mib, NMIB(mib), &sigar->pagesize, &len, NULL, 0) < 0) {
return errno;
}
#ifdef DARWIN
mib[1] = HW_MEMSIZE;
# define MEM_VAL value64
#else
mib[1] = HW_PHYSMEM;
# define MEM_VAL value
#endif
len = sizeof(MEM_VAL);
if (sysctl(mib, NMIB(mib), &MEM_VAL, &len, NULL, 0) < 0) {
return errno;
}
mem->total = MEM_VAL;
#ifdef DARWIN
status = host_statistics(sigar->mach_port, HOST_VM_INFO,
(host_info_t)&vmstat, &count);
if (status != KERN_SUCCESS) {
return errno;
}
mem->free = vmstat.free_count * sigar->pagesize;
#else
len = sizeof(value);
if (sysctlbyname("vm.stats.vm.v_free_count",
&value, &len, NULL, 0) == -1)
{
mem->free = 0; /*XXX*/
}
else {
mem->free = value * sigar->pagesize;
}
#endif
mem->used = mem->total - mem->free;
sigar_mem_calc_ram(sigar, mem);
mem->actual_free = mem->free;
mem->actual_used = mem->used;
return SIGAR_OK;
}
#define SIGAR_FS_BLOCKS_TO_BYTES(buf, f) \
(((sigar_uint64_t)buf.f * (buf.f_bsize / 512)) >> 1)
#define VM_DIR "/private/var/vm"
#define SWAPFILE "swapfile"
#define NL_SWAPBLIST 0
#define NL_SWDEVT 1
#define NL_NSWDEV 2
#define NL_DMMAX 3
#define SWI_MAXMIB 3
#ifdef SIGAR_FREEBSD5
/* code in this function is based on FreeBSD 5.3 kvm_getswapinfo.c */
static int getswapinfo_sysctl(struct kvm_swap *swap_ary,
int swap_max)
{
int ti, ttl;
size_t mibi, len, size;
int soid[SWI_MAXMIB];
struct xswdev xsd;
struct kvm_swap tot;
int unswdev, dmmax;
/* XXX this can be optimized by using os_open */
size = sizeof(dmmax);
if (sysctlbyname("vm.dmmax", &dmmax, &size, NULL, 0) == -1) {
return errno;
}
mibi = SWI_MAXMIB - 1;
if (sysctlnametomib("vm.swap_info", soid, &mibi) == -1) {
return errno;
}
bzero(&tot, sizeof(tot));
for (unswdev = 0;; unswdev++) {
soid[mibi] = unswdev;
len = sizeof(xsd);
if (sysctl(soid, mibi + 1, &xsd, &len, NULL, 0) == -1) {
if (errno == ENOENT) {
break;
}
return errno;
}
#if 0
if (len != sizeof(xsd)) {
_kvm_err(kd, kd->program, "struct xswdev has unexpected "
"size; kernel and libkvm out of sync?");
return -1;
}
if (xsd.xsw_version != XSWDEV_VERSION) {
_kvm_err(kd, kd->program, "struct xswdev version "
"mismatch; kernel and libkvm out of sync?");
return -1;
}
#endif
ttl = xsd.xsw_nblks - dmmax;
if (unswdev < swap_max - 1) {
bzero(&swap_ary[unswdev], sizeof(swap_ary[unswdev]));
swap_ary[unswdev].ksw_total = ttl;
swap_ary[unswdev].ksw_used = xsd.xsw_used;
swap_ary[unswdev].ksw_flags = xsd.xsw_flags;
}
tot.ksw_total += ttl;
tot.ksw_used += xsd.xsw_used;
}
ti = unswdev;
if (ti >= swap_max) {
ti = swap_max - 1;
}
if (ti >= 0) {
swap_ary[ti] = tot;
}
return SIGAR_OK;
}
#else
#define getswapinfo_sysctl(swap_ary, swap_max) SIGAR_ENOTIMPL
#endif
int sigar_swap_get(sigar_t *sigar, sigar_swap_t *swap)
{
#ifdef DARWIN
DIR *dirp;
struct dirent *ent;
char swapfile[SSTRLEN(VM_DIR) + SSTRLEN("/") + SSTRLEN(SWAPFILE) + 12];
struct stat swapstat;
struct statfs vmfs;
swap->used = swap->total = swap->free = 0;
if (!(dirp = opendir(VM_DIR))) {
return errno;
}
/* looking for "swapfile0", "swapfile1", etc. */
while ((ent = readdir(dirp))) {
char *ptr = swapfile;
if ((ent->d_namlen < SSTRLEN(SWAPFILE)+1) || /* n/a, see comment above */
(ent->d_namlen > SSTRLEN(SWAPFILE)+11)) /* ensure no overflow */
{
continue;
}
if (!strnEQ(ent->d_name, SWAPFILE, SSTRLEN(SWAPFILE))) {
continue;
}
/* sprintf(swapfile, "%s/%s", VM_DIR, ent->d_name) */
memcpy(ptr, VM_DIR, SSTRLEN(VM_DIR));
ptr += SSTRLEN(VM_DIR);
*ptr++ = '/';
memcpy(ptr, ent->d_name, ent->d_namlen+1);
if (stat(swapfile, &swapstat) < 0) {
continue;
}
swap->used += swapstat.st_size;
}
closedir(dirp);
if (statfs(VM_DIR, &vmfs) < 0) {
return errno;
}
swap->total = SIGAR_FS_BLOCKS_TO_BYTES(vmfs, f_bfree) + swap->used;
swap->free = swap->total - swap->used;
#else
struct kvm_swap kswap[1];
if (getswapinfo_sysctl(kswap, 1) != SIGAR_OK) {
if (!sigar->kmem) {
return SIGAR_EPERM_KMEM;
}
if (kvm_getswapinfo(sigar->kmem, kswap, 1, 0) < 0) {
return errno;
}
}
if (kswap[0].ksw_total == 0) {
swap->total = 0;
swap->used = 0;
swap->free = 0;
return SIGAR_OK;
}
swap->total = kswap[0].ksw_total * sigar->pagesize;
swap->used = kswap[0].ksw_used * sigar->pagesize;
swap->free = swap->total - swap->used;
#endif
return SIGAR_OK;
}
int sigar_cpu_get(sigar_t *sigar, sigar_cpu_t *cpu)
{
#ifdef DARWIN
kern_return_t status;
mach_msg_type_number_t count = HOST_CPU_LOAD_INFO_COUNT;
host_cpu_load_info_data_t cpuload;
status = host_statistics(sigar->mach_port, HOST_CPU_LOAD_INFO,
(host_info_t)&cpuload, &count);
if (status != KERN_SUCCESS) {
return errno;
}
cpu->user = cpuload.cpu_ticks[CPU_STATE_USER];
cpu->sys = cpuload.cpu_ticks[CPU_STATE_SYSTEM];
cpu->idle = cpuload.cpu_ticks[CPU_STATE_IDLE];
cpu->nice = cpuload.cpu_ticks[CPU_STATE_NICE];
cpu->wait = 0; /*N/A*/
cpu->total = cpu->user + cpu->nice + cpu->sys + cpu->idle;
#else
int status;
long cp_time[CPUSTATES];
size_t size = sizeof(cp_time);
/* try sysctl first, does not require /dev/kmem perms */
if (sysctlbyname("kern.cp_time", &cp_time, &size, NULL, 0) == -1) {
status = kread(sigar, &cp_time, sizeof(cp_time),
sigar->koffsets[KOFFSET_CPUINFO]);
}
else {
status = SIGAR_OK;
}
if (status != SIGAR_OK) {
return status;
}
cpu->user = SIGAR_TICK2SEC(cp_time[CP_USER]);
cpu->nice = SIGAR_TICK2SEC(cp_time[CP_NICE]);
cpu->sys = SIGAR_TICK2SEC(cp_time[CP_SYS] + cp_time[CP_INTR]);
cpu->idle = SIGAR_TICK2SEC(cp_time[CP_IDLE]);
cpu->wait = 0; /*N/A*/
cpu->total = cpu->user + cpu->nice + cpu->sys + cpu->idle;
#endif
return SIGAR_OK;
}
int sigar_cpu_list_get(sigar_t *sigar, sigar_cpu_list_t *cpulist)
{
#ifdef DARWIN
kern_return_t status;
mach_msg_type_number_t count;
processor_cpu_load_info_data_t *cpuload;
natural_t i, ncpu;
status = host_processor_info(sigar->mach_port,
PROCESSOR_CPU_LOAD_INFO,
&ncpu,
(processor_info_array_t*)&cpuload,
&count);
if (status != KERN_SUCCESS) {
return errno;
}
sigar_cpu_list_create(cpulist);
for (i=0; i<ncpu; i++) {
sigar_cpu_t *cpu;
SIGAR_CPU_LIST_GROW(cpulist);
cpu = &cpulist->data[cpulist->number++];
cpu->user = cpuload[i].cpu_ticks[CPU_STATE_USER];
cpu->sys = cpuload[i].cpu_ticks[CPU_STATE_SYSTEM];
cpu->idle = cpuload[i].cpu_ticks[CPU_STATE_IDLE];
cpu->nice = cpuload[i].cpu_ticks[CPU_STATE_NICE];
cpu->wait = 0; /*N/A*/
cpu->total = cpu->user + cpu->nice + cpu->sys + cpu->idle;
}
vm_deallocate(mach_task_self(), (vm_address_t)cpuload, count);
return SIGAR_OK;
#else
int status, i;
sigar_cpu_t *cpu;
sigar_cpu_list_create(cpulist);
/* XXX howto multi cpu in freebsd?
* for now just report all metrics on the 1st cpu
* 0's for the rest
*/
cpu = &cpulist->data[cpulist->number++];
status = sigar_cpu_get(sigar, cpu);
if (status != SIGAR_OK) {
return status;
}
for (i=1; i<sigar->ncpu; i++) {
SIGAR_CPU_LIST_GROW(cpulist);
cpu = &cpulist->data[cpulist->number++];
SIGAR_ZERO(cpu);
}
return SIGAR_OK;
#endif
}
int sigar_uptime_get(sigar_t *sigar,
sigar_uptime_t *uptime)
{
uptime->uptime = time(NULL) - sigar->boot_time;
return SIGAR_OK;
}
int sigar_loadavg_get(sigar_t *sigar,
sigar_loadavg_t *loadavg)
{
getloadavg(loadavg->loadavg, 3);
return SIGAR_OK;
}
#ifndef KERN_PROC_PROC
/* freebsd 4.x */
#define KERN_PROC_PROC KERN_PROC_ALL
#endif
int sigar_proc_list_get(sigar_t *sigar,
sigar_proc_list_t *proclist)
{
#if defined(DARWIN) || defined(SIGAR_FREEBSD5)
int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PROC, 0 };
int i, num;
size_t len;
struct kinfo_proc *proc;
if (sysctl(mib, NMIB(mib), NULL, &len, NULL, 0) < 0) {
return errno;
}
proc = malloc(len);
if (sysctl(mib, NMIB(mib), proc, &len, NULL, 0) < 0) {
free(proc);
return errno;
}
num = len/sizeof(*proc);
sigar_proc_list_create(proclist);
for (i=0; i<num; i++) {
if (proc[i].KI_FLAG & P_SYSTEM) {
continue;
}
SIGAR_PROC_LIST_GROW(proclist);
proclist->data[proclist->number++] = proc[i].KI_PID;
}
free(proc);
return SIGAR_OK;
#else
int i, num;
struct kinfo_proc *proc;
if (!sigar->kmem) {
return SIGAR_EPERM_KMEM;
}
proc = kvm_getprocs(sigar->kmem, KERN_PROC_PROC, 0, &num);
sigar_proc_list_create(proclist);
for (i=0; i<num; i++) {
if (proc[i].KI_FLAG & P_SYSTEM) {
continue;
}
SIGAR_PROC_LIST_GROW(proclist);
proclist->data[proclist->number++] = proc[i].KI_PID;
}
#endif
return SIGAR_OK;
}
int sigar_proc_stat_get(sigar_t *sigar,
sigar_proc_stat_t *procstat)
{
int status = /* XXX optimize */
sigar_proc_count(sigar, &procstat->total);
return status;
}
static int sigar_get_pinfo(sigar_t *sigar, sigar_pid_t pid)
{
int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, 0 };
size_t len = sizeof(*sigar->pinfo);
time_t timenow = time(NULL);
mib[3] = pid;
if (sigar->pinfo == NULL) {
sigar->pinfo = malloc(len);
}
if (sigar->last_pid == pid) {
if ((timenow - sigar->last_getprocs) < SIGAR_LAST_PROC_EXPIRE) {
return SIGAR_OK;
}
}
sigar->last_pid = pid;
sigar->last_getprocs = timenow;
if (sysctl(mib, NMIB(mib), sigar->pinfo, &len, NULL, 0) < 0) {
return errno;
}
return SIGAR_OK;
}
int sigar_proc_mem_get(sigar_t *sigar, sigar_pid_t pid,
sigar_proc_mem_t *procmem)
{
#ifdef DARWIN
mach_port_t task, self = mach_task_self();
kern_return_t status;
task_basic_info_data_t info;
task_events_info_data_t events;
mach_msg_type_number_t count;
status = task_for_pid(self, pid, &task);
if (status != KERN_SUCCESS) {
return errno;
}
count = TASK_BASIC_INFO_COUNT;
status = task_info(task, TASK_BASIC_INFO, (task_info_t)&info, &count);
if (status != KERN_SUCCESS) {
return errno;
}
count = TASK_EVENTS_INFO_COUNT;
status = task_info(task, TASK_EVENTS_INFO, (task_info_t)&events, &count);
if (status == KERN_SUCCESS) {
procmem->page_faults = events.faults;
}
else {
procmem->page_faults = SIGAR_FIELD_NOTIMPL;
}
procmem->minor_faults = SIGAR_FIELD_NOTIMPL;
procmem->major_faults = SIGAR_FIELD_NOTIMPL;
if (task != self) {
mach_port_deallocate(self, task);
}
procmem->size = info.virtual_size;
procmem->resident = info.resident_size;
procmem->share = SIGAR_FIELD_NOTIMPL;
return SIGAR_OK;
#else
int status = sigar_get_pinfo(sigar, pid);
struct kinfo_proc *pinfo = sigar->pinfo;
if (status != SIGAR_OK) {
return status;
}
procmem->size =
(pinfo->KI_TSZ + pinfo->KI_DSZ + pinfo->KI_SSZ) * sigar->pagesize;
procmem->resident = pinfo->KI_RSS * sigar->pagesize;
procmem->share = SIGAR_FIELD_NOTIMPL;
procmem->page_faults = SIGAR_FIELD_NOTIMPL;
procmem->minor_faults = SIGAR_FIELD_NOTIMPL;
procmem->major_faults = SIGAR_FIELD_NOTIMPL;
return SIGAR_OK;
#endif
}
int sigar_proc_cred_get(sigar_t *sigar, sigar_pid_t pid,
sigar_proc_cred_t *proccred)
{
int status = sigar_get_pinfo(sigar, pid);
struct kinfo_proc *pinfo = sigar->pinfo;
if (status != SIGAR_OK) {
return status;
}
proccred->uid = pinfo->KI_UID;
proccred->gid = pinfo->KI_GID;
proccred->euid = pinfo->KI_EUID;
proccred->egid = pinfo->KI_EGID;
return SIGAR_OK;
}
#ifdef DARWIN
static int get_proc_times(sigar_pid_t pid, sigar_proc_time_t *time)
{
unsigned int count;
time_value_t utime = {0, 0}, stime = {0, 0};
task_basic_info_data_t ti;
task_thread_times_info_data_t tti;
task_port_t task, self = mach_task_self();
kern_return_t status;
status = task_for_pid(self, pid, &task);
if (status != KERN_SUCCESS) {
return errno;
}
count = TASK_BASIC_INFO_COUNT;
status = task_info(task, TASK_BASIC_INFO,
(task_info_t)&ti, &count);
if (status != KERN_SUCCESS) {
if (task != self) {
mach_port_deallocate(self, task);
}
return errno;
}
count = TASK_THREAD_TIMES_INFO_COUNT;
status = task_info(task, TASK_THREAD_TIMES_INFO,
(task_info_t)&tti, &count);
if (status != KERN_SUCCESS) {
if (task != self) {
mach_port_deallocate(self, task);
}
return errno;
}
time_value_add(&utime, &ti.user_time);
time_value_add(&stime, &ti.system_time);
time_value_add(&utime, &tti.user_time);
time_value_add(&stime, &tti.system_time);
time->user = utime.seconds;
time->sys = stime.seconds;
time->total = time->user + time->sys;
return SIGAR_OK;
}
#endif
#define tv2sec(tv) \
((sigar_uint64_t)tv.tv_sec + (((sigar_uint64_t)tv.tv_usec) / 1000000))
int sigar_proc_time_get(sigar_t *sigar, sigar_pid_t pid,
sigar_proc_time_t *proctime)
{
#ifdef SIGAR_FREEBSD4
struct user user;
#endif
int status = sigar_get_pinfo(sigar, pid);
struct kinfo_proc *pinfo = sigar->pinfo;
if (status != SIGAR_OK) {
return status;
}
#if defined(DARWIN)
if ((status = get_proc_times(pid, proctime)) != SIGAR_OK) {
return status;
}
proctime->start_time = tv2sec(pinfo->KI_START) * 1000;
#elif defined(SIGAR_FREEBSD5)
proctime->user = tv2sec(pinfo->ki_rusage.ru_utime);
proctime->sys = tv2sec(pinfo->ki_rusage.ru_stime);
proctime->total = proctime->user + proctime->sys;
proctime->start_time = tv2sec(pinfo->KI_START) * 1000;
#else
if (!sigar->kmem) {
return SIGAR_EPERM_KMEM;
}
status = kread(sigar, &user, sizeof(user),
(u_long)pinfo->kp_proc.p_addr);
if (status != SIGAR_OK) {
return status;
}
proctime->user = tv2sec(user.u_stats.p_ru.ru_utime);
proctime->sys = tv2sec(user.u_stats.p_ru.ru_stime);
proctime->total = proctime->user + proctime->sys;
proctime->start_time = tv2sec(user.u_stats.p_start) * 1000;
#endif
return SIGAR_OK;
}
int sigar_proc_state_get(sigar_t *sigar, sigar_pid_t pid,
sigar_proc_state_t *procstate)
{
int status = sigar_get_pinfo(sigar, pid);
struct kinfo_proc *pinfo = sigar->pinfo;
if (status != SIGAR_OK) {
return status;
}
SIGAR_SSTRCPY(procstate->name, pinfo->KI_COMM);
procstate->ppid = pinfo->KI_PPID;
procstate->priority = pinfo->KI_PRI;
procstate->nice = pinfo->KI_NICE;
procstate->tty = SIGAR_FIELD_NOTIMPL; /*XXX*/
procstate->threads = SIGAR_FIELD_NOTIMPL;
procstate->processor = SIGAR_FIELD_NOTIMPL;
switch (pinfo->KI_STAT) {
case SIDL:
procstate->state = 'D';
break;
case SRUN:
procstate->state = 'R';
break;
case SSLEEP:
procstate->state = 'S';
break;
case SSTOP:
procstate->state = 'T';
break;
case SZOMB:
procstate->state = 'Z';
break;
}
return SIGAR_OK;
}
#if defined(DARWIN)
typedef struct {
char buffer[8096], *ptr, *end;
int count;
} sigar_kern_proc_args_t;
/* re-usable hack for use by proc_args and proc_env */
static int sigar_kern_proc_args_get(sigar_pid_t pid,
char *exe,
sigar_kern_proc_args_t *kargs)
{
/*
* derived from:
* http://darwinsource.opendarwin.org/10.4.1/adv_cmds-79.1/ps.tproj/print.c
*/
int mib[3], len;
size_t size = sizeof(kargs->buffer);
char *args = kargs->buffer;
mib[0] = CTL_KERN;
mib[1] = KERN_PROCARGS2;
mib[2] = pid;
if (sysctl(mib, NMIB(mib), args, &size, NULL, 0) < 0) {
return errno;
}
kargs->end = &args[size];
memcpy(&kargs->count, args, sizeof(kargs->count));
kargs->ptr = args + sizeof(kargs->count);
len = strlen(kargs->ptr);
if (exe) {
memcpy(exe, kargs->ptr, len+1);
}
kargs->ptr += len+1;
if (kargs->ptr == kargs->end) {
return exe ? SIGAR_OK : ENOENT;
}
for (; kargs->ptr < kargs->end; kargs->ptr++) {
if (*kargs->ptr != '\0') {
break; /* start of argv[0] */
}
}
if (kargs->ptr == kargs->end) {
return exe ? SIGAR_OK : ENOENT;
}
return SIGAR_OK;
}
#endif
int sigar_proc_args_get(sigar_t *sigar, sigar_pid_t pid,
sigar_proc_args_t *procargs)
{
#if defined(DARWIN)
int status, count;
sigar_kern_proc_args_t kargs;
char *ptr, *end;
status = sigar_kern_proc_args_get(pid, NULL, &kargs);
if (status != SIGAR_OK) {
return status;
}
count = kargs.count;
ptr = kargs.ptr;
end = kargs.end;
sigar_proc_args_create(procargs);
while ((ptr < end) && (count-- > 0)) {
int slen = strlen(ptr);
int alen = slen+1;
char *arg;
/*
* trim trailing whitespace.
* seen w/ postgresql, probably related
* to messing with argv[0]
*/
while (*(ptr + (slen-1)) == ' ') {
if (--slen <= 0) {
break;
}
}
arg = malloc(slen+1);
SIGAR_PROC_ARGS_GROW(procargs);
memcpy(arg, ptr, slen);
*(arg+slen) = '\0';
procargs->data[procargs->number++] = arg;
ptr += alen;
}
return SIGAR_OK;
#else
/* ARG_MAX in FreeBSD 6.0 == 262144, which blows up the stack */
#define SIGAR_ARG_MAX 65536
char buffer[SIGAR_ARG_MAX+1], *ptr=buffer;
size_t len = sizeof(buffer);
int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_ARGS, 0 };
mib[3] = pid;
if (sysctl(mib, NMIB(mib), buffer, &len, NULL, 0) < 0) {
return errno;
}
sigar_proc_args_create(procargs);
if (len == 0) {
procargs->number = 0;
return SIGAR_OK;
}
buffer[len] = '\0';
while (len > 0) {
int alen = strlen(ptr)+1;
char *arg = malloc(alen);
SIGAR_PROC_ARGS_GROW(procargs);
memcpy(arg, ptr, alen);
procargs->data[procargs->number++] = arg;
len -= alen;
if (len > 0) {
ptr += alen;
}
}
return SIGAR_OK;
#endif
}
int sigar_proc_env_get(sigar_t *sigar, sigar_pid_t pid,
sigar_proc_env_t *procenv)
{
#ifdef DARWIN
int status, count;
sigar_kern_proc_args_t kargs;
char *ptr, *end;
status = sigar_kern_proc_args_get(pid, NULL, &kargs);
if (status != SIGAR_OK) {
return status;
}
count = kargs.count;
ptr = kargs.ptr;
end = kargs.end;
/* skip over argv */
while ((ptr < end) && (count-- > 0)) {
int alen = strlen(ptr)+1;
ptr += alen;
}
if (ptr >= end) {
return ENOENT;
}
/* into environ */
while (ptr < end) {
char *val = strchr(ptr, '=');
int klen, vlen, status;
char key[256]; /* XXX is there a max key size? */
if (val == NULL) {
/* not key=val format */
break;
}
klen = val - ptr;
SIGAR_SSTRCPY(key, ptr);
key[klen] = '\0';
++val;
vlen = strlen(val);
status = procenv->env_getter(procenv->data,
key, klen, val, vlen);
if (status != SIGAR_OK) {
/* not an error; just stop iterating */
break;
}
ptr += (klen + 1 + vlen + 1);
if (*ptr == '\0') {
break;
}
}
return SIGAR_OK;
#else
char **env;
struct kinfo_proc *pinfo;
int num;
if (!sigar->kmem) {
return SIGAR_EPERM_KMEM;
}
pinfo = kvm_getprocs(sigar->kmem, KERN_PROC_PID, pid, &num);
if (!pinfo || (num < 1)) {
return errno;
}
if (!(env = kvm_getenvv(sigar->kmem, pinfo, 9086))) {
return errno;
}
while (*env) {
char *ptr = *env++;
char *val = strchr(ptr, '=');
int klen, vlen, status;
char key[128]; /* XXX is there a max key size? */
if (val == NULL) {
/* not key=val format */
procenv->env_getter(procenv->data, ptr, strlen(ptr), NULL, 0);
break;
}
klen = val - ptr;
SIGAR_SSTRCPY(key, ptr);
key[klen] = '\0';
++val;
vlen = strlen(val);
status = procenv->env_getter(procenv->data,
key, klen, val, vlen);
if (status != SIGAR_OK) {
/* not an error; just stop iterating */
break;
}
ptr += (klen + 1 + vlen + 1);
}
return SIGAR_OK;
#endif
}
int sigar_proc_fd_get(sigar_t *sigar, sigar_pid_t pid,
sigar_proc_fd_t *procfd)
{
#ifndef DARWIN
int status;
struct kinfo_proc *pinfo;
struct filedesc filed;
#if 0
struct file **ofiles;
int nfiles, i;
size_t size;
#endif
if (!sigar->kmem) {
return SIGAR_EPERM_KMEM;
}
if ((status = sigar_get_pinfo(sigar, pid)) != SIGAR_OK) {
return status;
}
pinfo = sigar->pinfo;
status = kread(sigar, &filed, sizeof(filed), (u_long)pinfo->KI_FD);
if (status != SIGAR_OK) {
return status;
}
#if 0
nfiles = filed.fd_lastfile+1;
size = sizeof(*ofiles) * nfiles;
ofiles = malloc(size);
status = kread(sigar, ofiles, size, (u_long)filed.fd_ofiles);
if (status != SIGAR_OK) {
free(ofiles);
return status;
}
procfd->total = 0;
for (i=0; i<filed.fd_lastfile; i++) {
if (!ofiles[i]) {
continue;
}
procfd->total++;
}
free(ofiles);
#else
/* seems the same as the above */
procfd->total = filed.fd_lastfile;
#endif
return SIGAR_OK;
#else
return SIGAR_ENOTIMPL;
#endif
}
int sigar_proc_exe_get(sigar_t *sigar, sigar_pid_t pid,
sigar_proc_exe_t *procexe)
{
#ifdef DARWIN
int status;
sigar_kern_proc_args_t kargs;
status = sigar_kern_proc_args_get(pid, procexe->name, &kargs);
if (status != SIGAR_OK) {
return status;
}
procexe->cwd[0] = '\0';
procexe->root[0] = '\0';
return SIGAR_OK;
#else
int len;
char name[1024];
procexe->cwd[0] = '\0';
procexe->root[0] = '\0';
(void)SIGAR_PROC_FILENAME(name, pid, "/file");
if ((len = readlink(name, procexe->name,
sizeof(procexe->name)-1)) < 0)
{
return PROCFS_STATUS(errno);
}
procexe->name[len] = '\0';
return SIGAR_OK;
#endif
}
int sigar_proc_modules_get(sigar_t *sigar, sigar_pid_t pid,
sigar_proc_modules_t *procmods)
{
return SIGAR_ENOTIMPL;
}
#define SIGAR_MICROSEC2NANO(s) \
((sigar_uint64_t)(s) * (sigar_uint64_t)1000)
#define TIME_NSEC(t) \
(SIGAR_SEC2NANO((t).tv_sec) + SIGAR_MICROSEC2NANO((t).tv_usec))
int sigar_thread_cpu_get(sigar_t *sigar,
sigar_uint64_t id,
sigar_thread_cpu_t *cpu)
{
/* XXX this is not per-thread, it is for the whole-process.
* just want to use for the shell time command at the moment.
*/
struct rusage usage;
getrusage(RUSAGE_SELF, &usage);
cpu->user = TIME_NSEC(usage.ru_utime);
cpu->sys = TIME_NSEC(usage.ru_stime);
cpu->total = TIME_NSEC(usage.ru_utime) + TIME_NSEC(usage.ru_stime);
return SIGAR_OK;
}
int sigar_os_fs_type_get(sigar_file_system_t *fsp)
{
char *type = fsp->sys_type_name;
/* see sys/disklabel.h */
switch (*type) {
case 'h':
if (strEQ(type, "hfs")) {
fsp->type = SIGAR_FSTYPE_LOCAL_DISK;
}
break;
case 'u':
if (strEQ(type, "ufs")) {
fsp->type = SIGAR_FSTYPE_LOCAL_DISK;
}
break;
}
return fsp->type;
}
int sigar_file_system_list_get(sigar_t *sigar,
sigar_file_system_list_t *fslist)
{
struct statfs *fs;
int num, i;
long len;
if ((num = getfsstat(NULL, 0, MNT_NOWAIT)) < 0) {
return errno;
}
len = sizeof(*fs) * num;
fs = malloc(len);
if ((num = getfsstat(fs, len, MNT_NOWAIT)) < 0) {
return errno;
}
sigar_file_system_list_create(fslist);
for (i=0; i<num; i++) {
sigar_file_system_t *fsp;
#ifdef MNT_AUTOMOUNTED
if (fs[i].f_flags & MNT_AUTOMOUNTED) {
continue;
}
#endif
SIGAR_FILE_SYSTEM_LIST_GROW(fslist);
fsp = &fslist->data[fslist->number++];
SIGAR_SSTRCPY(fsp->dir_name, fs[i].f_mntonname);
SIGAR_SSTRCPY(fsp->dev_name, fs[i].f_mntfromname);
SIGAR_SSTRCPY(fsp->sys_type_name, fs[i].f_fstypename);
sigar_fs_type_init(fsp);
}
return SIGAR_OK;
}
int sigar_file_system_usage_get(sigar_t *sigar,
const char *dirname,
sigar_file_system_usage_t *fsusage)
{
struct statfs buf;
if (statfs(dirname, &buf) < 0) {
return errno;
}
fsusage->total = SIGAR_FS_BLOCKS_TO_BYTES(buf, f_blocks);
fsusage->free = SIGAR_FS_BLOCKS_TO_BYTES(buf, f_bfree);
fsusage->avail = SIGAR_FS_BLOCKS_TO_BYTES(buf, f_bavail);
fsusage->used = fsusage->total - fsusage->free;
fsusage->files = buf.f_files;
fsusage->free_files = buf.f_ffree;
fsusage->use_percent = sigar_file_system_usage_calc_used(sigar, fsusage);
#ifdef DARWIN
SIGAR_DISK_STATS_NOTIMPL(fsusage);
#else
fsusage->disk_reads = buf.f_syncreads + buf.f_asyncreads;
fsusage->disk_writes = buf.f_syncwrites + buf.f_asyncwrites;
fsusage->disk_read_bytes = SIGAR_FIELD_NOTIMPL;
fsusage->disk_write_bytes = SIGAR_FIELD_NOTIMPL;
fsusage->disk_queue = SIGAR_FIELD_NOTIMPL;
#endif
return SIGAR_OK;
}
#ifdef DARWIN
#define CTL_HW_FREQ "hw.cpufrequency"
#else
/* XXX FreeBSD 5.x+ only? */
#define CTL_HW_FREQ "machdep.tsc_freq"
#endif
int sigar_cpu_info_list_get(sigar_t *sigar,
sigar_cpu_info_list_t *cpu_infos)
{
int i;
unsigned int mhz;
int cache_size=SIGAR_FIELD_NOTIMPL;
size_t size;
char model[128], vendor[128], *ptr;
size = sizeof(mhz);
#ifdef DARWIN
{
int mib[] = { CTL_HW, HW_CPU_FREQ };
size = sizeof(mhz);
if (sysctl(mib, NMIB(mib), &mhz, &size, NULL, 0) < 0) {
mhz = SIGAR_FIELD_NOTIMPL;
}
}
#else
if (sysctlbyname(CTL_HW_FREQ, &mhz, &size, NULL, 0) < 0) {
mhz = SIGAR_FIELD_NOTIMPL;
}
#endif
if (mhz != SIGAR_FIELD_NOTIMPL) {
mhz /= 1000000;
}
size = sizeof(model);
if (sysctlbyname("hw.model", &model, &size, NULL, 0) < 0) {
int mib[] = { CTL_HW, HW_MODEL };
size = sizeof(model);
if (sysctl(mib, NMIB(mib), &model[0], &size, NULL, 0) < 0) {
#ifdef DARWIN
strcpy(model, "powerpc");
#else
strcpy(model, "Unknown");
#endif
}
}
if (mhz == SIGAR_FIELD_NOTIMPL) {
/* freebsd4 */
mhz = sigar_cpu_mhz_from_model(model);
}
#ifdef DARWIN
size = sizeof(vendor);
if (sysctlbyname("machdep.cpu.vendor", &vendor, &size, NULL, 0) < 0) {
SIGAR_SSTRCPY(vendor, "Apple");
}
else {
/* GenuineIntel -> Intel */
if (strstr(vendor, "Intel")) {
SIGAR_SSTRCPY(vendor, "Intel");
}
}
#endif
if ((ptr = strchr(model, ' '))) {
*ptr = '\0';
if (strstr(model, "Intel")) {
SIGAR_SSTRCPY(vendor, "Intel");
}
else if (strstr(model, "AMD")) {
SIGAR_SSTRCPY(vendor, "AMD");
}
else {
SIGAR_SSTRCPY(vendor, "Unknown");
}
SIGAR_SSTRCPY(model, ptr+1);
}
#ifdef DARWIN
{
int mib[] = { CTL_HW, HW_L2CACHESIZE }; /* in bytes */
size = sizeof(cache_size);
if (sysctl(mib, NMIB(mib), &cache_size, &size, NULL, 0) < 0) {
cache_size = SIGAR_FIELD_NOTIMPL;
}
else {
cache_size /= 1024; /* convert to KB */
}
}
#endif
sigar_cpu_info_list_create(cpu_infos);
for (i=0; i<sigar->ncpu; i++) {
sigar_cpu_info_t *info;
SIGAR_CPU_INFO_LIST_GROW(cpu_infos);
info = &cpu_infos->data[cpu_infos->number++];
SIGAR_SSTRCPY(info->vendor, vendor);
SIGAR_SSTRCPY(info->model, model);
sigar_cpu_model_adjust(sigar, info);
info->mhz = mhz;
info->cache_size = cache_size;
}
return SIGAR_OK;
}
#define rt_s_addr(sa) ((struct sockaddr_in *)(sa))->sin_addr.s_addr
#ifndef SA_SIZE
#define SA_SIZE(sa) \
( (!(sa) || ((struct sockaddr *)(sa))->sa_len == 0) ? \
sizeof(long) : \
1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(long) - 1) ) )
#endif
int sigar_net_route_list_get(sigar_t *sigar,
sigar_net_route_list_t *routelist)
{
size_t needed;
int bit;
char *buf, *next, *lim;
struct rt_msghdr *rtm;
int mib[6] = { CTL_NET, PF_ROUTE, 0, 0, NET_RT_DUMP, 0 };
if (sysctl(mib, NMIB(mib), NULL, &needed, NULL, 0) < 0) {
return errno;
}
buf = malloc(needed);
if (sysctl(mib, NMIB(mib), buf, &needed, NULL, 0) < 0) {
free(buf);
return errno;
}
sigar_net_route_list_create(routelist);
lim = buf + needed;
for (next = buf; next < lim; next += rtm->rtm_msglen) {
struct sockaddr *sa;
sigar_net_route_t *route;
rtm = (struct rt_msghdr *)next;
if (rtm->rtm_type != RTM_GET) {
continue;
}
sa = (struct sockaddr *)(rtm + 1);
if (sa->sa_family != AF_INET) {
continue;
}
SIGAR_NET_ROUTE_LIST_GROW(routelist);
route = &routelist->data[routelist->number++];
SIGAR_ZERO(route);
route->flags = rtm->rtm_flags;
for (bit=RTA_DST;
bit && ((char *)sa < lim);
bit <<= 1)
{
if ((rtm->rtm_addrs & bit) == 0) {
continue;
}
switch (bit) {
case RTA_DST:
sigar_net_address_set(route->destination,
rt_s_addr(sa));
break;
case RTA_GATEWAY:
if (sa->sa_family == AF_INET) {
sigar_net_address_set(route->gateway,
rt_s_addr(sa));
}
break;
case RTA_NETMASK:
sigar_net_address_set(route->mask,
rt_s_addr(sa));
break;
case RTA_IFA:
break;
}
sa = (struct sockaddr *)((char *)sa + SA_SIZE(sa));
}
}
free(buf);
return SIGAR_OK;
}
typedef enum {
IFMSG_ITER_LIST,
IFMSG_ITER_GET
} ifmsg_iter_e;
typedef struct {
const char *name;
ifmsg_iter_e type;
union {
sigar_net_interface_list_t *iflist;
struct if_msghdr *ifm;
} data;
} ifmsg_iter_t;
static int sigar_ifmsg_init(sigar_t *sigar)
{
int mib[] = { CTL_NET, PF_ROUTE, 0, AF_INET, NET_RT_IFLIST, 0 };
size_t len;
if (sysctl(mib, NMIB(mib), NULL, &len, NULL, 0) < 0) {
return errno;
}
if (sigar->ifconf_len < len) {
sigar->ifconf_buf = realloc(sigar->ifconf_buf, len);
sigar->ifconf_len = len;
}
if (sysctl(mib, NMIB(mib), sigar->ifconf_buf, &len, NULL, 0) < 0) {
return errno;
}
return SIGAR_OK;
}
static int sigar_ifmsg_iter(sigar_t *sigar, ifmsg_iter_t *iter)
{
char *end = sigar->ifconf_buf + sigar->ifconf_len;
char *ptr = sigar->ifconf_buf;
if (iter->type == IFMSG_ITER_LIST) {
sigar_net_interface_list_create(iter->data.iflist);
}
while (ptr < end) {
char *name;
struct sockaddr_dl *sdl;
struct if_msghdr *ifm = (struct if_msghdr *)ptr;
if (ifm->ifm_type != RTM_IFINFO) {
break;
}
ptr += ifm->ifm_msglen;
while (ptr < end) {
struct if_msghdr *next = (struct if_msghdr *)ptr;
if (next->ifm_type != RTM_NEWADDR) {
break;
}
ptr += next->ifm_msglen;
}
sdl = (struct sockaddr_dl *)(ifm + 1);
if (sdl->sdl_family != AF_LINK) {
continue;
}
if (!((sdl->sdl_type == IFT_ETHER) ||
(sdl->sdl_type == IFT_LOOP)))
{
continue; /* XXX deal w/ other weirdo interfaces */
}
switch (iter->type) {
case IFMSG_ITER_LIST:
SIGAR_NET_IFLIST_GROW(iter->data.iflist);
name = malloc(sdl->sdl_nlen+1);
memcpy(name, sdl->sdl_data, sdl->sdl_nlen+1);
iter->data.iflist->data[iter->data.iflist->number++] = name;
break;
case IFMSG_ITER_GET:
if (strEQ(iter->name, sdl->sdl_data)) {
iter->data.ifm = ifm;
return SIGAR_OK;
}
}
}
switch (iter->type) {
case IFMSG_ITER_LIST:
return SIGAR_OK;
case IFMSG_ITER_GET:
default:
return ENXIO;
}
}
int sigar_net_interface_list_get(sigar_t *sigar,
sigar_net_interface_list_t *iflist)
{
int status;
ifmsg_iter_t iter;
if ((status = sigar_ifmsg_init(sigar)) != SIGAR_OK) {
return status;
}
iter.type = IFMSG_ITER_LIST;
iter.data.iflist = iflist;
return sigar_ifmsg_iter(sigar, &iter);
}
int sigar_net_interface_config_get(sigar_t *sigar, const char *name,
sigar_net_interface_config_t *ifconfig)
{
int sock;
int status;
ifmsg_iter_t iter;
struct if_msghdr *ifm;
struct sockaddr_dl *sdl;
struct ifreq ifr;
if (sigar->ifconf_len == 0) {
if ((status = sigar_ifmsg_init(sigar)) != SIGAR_OK) {
return status;
}
}
SIGAR_ZERO(ifconfig);
iter.type = IFMSG_ITER_GET;
iter.name = name;
if ((status = sigar_ifmsg_iter(sigar, &iter)) != SIGAR_OK) {
return status;
}
if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
return errno;
}
ifm = iter.data.ifm;
SIGAR_SSTRCPY(ifconfig->name, name);
sdl = (struct sockaddr_dl *)(ifm + 1);
sigar_net_address_mac_set(ifconfig->hwaddr,
LLADDR(sdl),
sdl->sdl_alen);
ifconfig->flags = ifm->ifm_flags;
ifconfig->mtu = ifm->ifm_data.ifi_mtu;
ifconfig->metric = ifm->ifm_data.ifi_metric;
SIGAR_SSTRCPY(ifr.ifr_name, name);
#define ifr_s_addr(ifr) \
((struct sockaddr_in *)&ifr.ifr_addr)->sin_addr.s_addr
if (!ioctl(sock, SIOCGIFADDR, &ifr)) {
sigar_net_address_set(ifconfig->address,
ifr_s_addr(ifr));
}
if (!ioctl(sock, SIOCGIFNETMASK, &ifr)) {
sigar_net_address_set(ifconfig->netmask,
ifr_s_addr(ifr));
}
if (ifconfig->flags & IFF_LOOPBACK) {
sigar_net_address_set(ifconfig->destination,
ifconfig->address.addr.in);
sigar_net_address_set(ifconfig->broadcast, 0);
SIGAR_SSTRCPY(ifconfig->type,
SIGAR_NIC_LOOPBACK);
}
else {
if (!ioctl(sock, SIOCGIFDSTADDR, &ifr)) {
sigar_net_address_set(ifconfig->destination,
ifr_s_addr(ifr));
}
if (!ioctl(sock, SIOCGIFBRDADDR, &ifr)) {
sigar_net_address_set(ifconfig->broadcast,
ifr_s_addr(ifr));
}
SIGAR_SSTRCPY(ifconfig->type,
SIGAR_NIC_ETHERNET);
}
close(sock);
/* XXX can we get a better description like win32? */
SIGAR_SSTRCPY(ifconfig->description,
ifconfig->name);
return SIGAR_OK;
}
int sigar_net_interface_stat_get(sigar_t *sigar, const char *name,
sigar_net_interface_stat_t *ifstat)
{
int status;
ifmsg_iter_t iter;
struct if_msghdr *ifm;
if ((status = sigar_ifmsg_init(sigar)) != SIGAR_OK) {
return status;
}
iter.type = IFMSG_ITER_GET;
iter.name = name;
if ((status = sigar_ifmsg_iter(sigar, &iter)) != SIGAR_OK) {
return status;
}
ifm = iter.data.ifm;
ifstat->rx_bytes = ifm->ifm_data.ifi_ibytes;
ifstat->rx_packets = ifm->ifm_data.ifi_ipackets;
ifstat->rx_errors = ifm->ifm_data.ifi_ierrors;
ifstat->rx_dropped = ifm->ifm_data.ifi_iqdrops;
ifstat->rx_overruns = SIGAR_FIELD_NOTIMPL;
ifstat->rx_frame = SIGAR_FIELD_NOTIMPL;
ifstat->tx_bytes = ifm->ifm_data.ifi_obytes;
ifstat->tx_packets = ifm->ifm_data.ifi_opackets;
ifstat->tx_errors = ifm->ifm_data.ifi_oerrors;
ifstat->tx_collisions = ifm->ifm_data.ifi_collisions;
ifstat->tx_dropped = SIGAR_FIELD_NOTIMPL;
ifstat->tx_overruns = SIGAR_FIELD_NOTIMPL;
ifstat->tx_carrier = SIGAR_FIELD_NOTIMPL;
ifstat->speed = ifm->ifm_data.ifi_baudrate;
return SIGAR_OK;
}
#include <sys/socketvar.h>
#include <netinet/tcp.h>
#include <netinet/in_pcb.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp_fsm.h>
static int net_connection_get(sigar_net_connection_walker_t *walker, int proto)
{
int flags = walker->flags;
int type, istcp = 0;
char *buf;
const char *mibvar;
struct tcpcb *tp = NULL;
struct inpcb *inp;
struct xinpgen *xig, *oxig;
struct xsocket *so;
size_t len;
switch (proto) {
case IPPROTO_TCP:
mibvar = "net.inet.tcp.pcblist";
istcp = 1;
type = SIGAR_NETCONN_TCP;
break;
case IPPROTO_UDP:
mibvar = "net.inet.udp.pcblist";
type = SIGAR_NETCONN_UDP;
break;
default:
mibvar = "net.inet.raw.pcblist";
type = SIGAR_NETCONN_RAW;
break;
}
len = 0;
if (sysctlbyname(mibvar, 0, &len, 0, 0) < 0) {
return errno;
}
if ((buf = malloc(len)) == 0) {
return errno;
}
if (sysctlbyname(mibvar, buf, &len, 0, 0) < 0) {
free(buf);
return errno;
}
oxig = xig = (struct xinpgen *)buf;
for (xig = (struct xinpgen *)((char *)xig + xig->xig_len);
xig->xig_len > sizeof(struct xinpgen);
xig = (struct xinpgen *)((char *)xig + xig->xig_len))
{
if (istcp) {
struct xtcpcb *cb = (struct xtcpcb *)xig;
tp = &cb->xt_tp;
inp = &cb->xt_inp;
so = &cb->xt_socket;
}
else {
struct xinpcb *cb = (struct xinpcb *)xig;
inp = &cb->xi_inp;
so = &cb->xi_socket;
}
if (so->xso_protocol != proto) {
continue;
}
if (inp->inp_gencnt > oxig->xig_gen) {
continue;
}
if ((((flags & SIGAR_NETCONN_SERVER) && so->so_qlimit) ||
((flags & SIGAR_NETCONN_CLIENT) && !so->so_qlimit)))
{
sigar_net_connection_t conn;
SIGAR_ZERO(&conn);
sigar_net_address_set(conn.local_address,
inp->inp_laddr.s_addr);
sigar_net_address_set(conn.remote_address,
inp->inp_faddr.s_addr);
conn.local_port = ntohs(inp->inp_lport);
conn.remote_port = ntohs(inp->inp_fport);
conn.receive_queue = so->so_rcv.sb_cc;
conn.send_queue = so->so_snd.sb_cc;
conn.type = type;
if (!istcp) {
conn.state = SIGAR_TCP_UNKNOWN;
if (walker->add_connection(walker, &conn) != SIGAR_OK) {
break;
}
continue;
}
switch (tp->t_state) {
case TCPS_CLOSED:
conn.state = SIGAR_TCP_CLOSE;
break;
case TCPS_LISTEN:
conn.state = SIGAR_TCP_LISTEN;
break;
case TCPS_SYN_SENT:
conn.state = SIGAR_TCP_SYN_SENT;
break;
case TCPS_SYN_RECEIVED:
conn.state = SIGAR_TCP_SYN_RECV;
break;
case TCPS_ESTABLISHED:
conn.state = SIGAR_TCP_ESTABLISHED;
break;
case TCPS_CLOSE_WAIT:
conn.state = SIGAR_TCP_CLOSE_WAIT;
break;
case TCPS_FIN_WAIT_1:
conn.state = SIGAR_TCP_FIN_WAIT1;
break;
case TCPS_CLOSING:
conn.state = SIGAR_TCP_CLOSING;
break;
case TCPS_LAST_ACK:
conn.state = SIGAR_TCP_LAST_ACK;
break;
case TCPS_FIN_WAIT_2:
conn.state = SIGAR_TCP_FIN_WAIT2;
break;
case TCPS_TIME_WAIT:
conn.state = SIGAR_TCP_TIME_WAIT;
break;
default:
conn.state = SIGAR_TCP_UNKNOWN;
break;
}
if (walker->add_connection(walker, &conn) != SIGAR_OK) {
break;
}
}
}
free(buf);
return SIGAR_OK;
}
int sigar_net_connection_walk(sigar_net_connection_walker_t *walker)
{
int flags = walker->flags;
int status;
if (flags & SIGAR_NETCONN_TCP) {
status = net_connection_get(walker, IPPROTO_TCP);
if (status != SIGAR_OK) {
return status;
}
}
if (flags & SIGAR_NETCONN_UDP) {
status = net_connection_get(walker, IPPROTO_UDP);
if (status != SIGAR_OK) {
return status;
}
}
return SIGAR_OK;
}
#ifndef DARWIN
#define _KERNEL
#include <sys/file.h>
#undef _KERNEL
/* derived from
* /usr/ports/security/pidentd/work/pidentd-3.0.16/src/k_freebsd2.c
*/
int sigar_proc_port_get(sigar_t *sigar, int protocol,
unsigned long port, sigar_pid_t *pid)
{
struct nlist nl[2];
struct inpcbhead tcb;
struct socket *sockp = NULL;
struct kinfo_proc *pinfo;
struct inpcb *head, pcbp;
int i, nentries, status;
if (protocol != SIGAR_NETCONN_TCP) {
return SIGAR_ENOTIMPL;
}
if (!sigar->kmem) {
return SIGAR_EPERM_KMEM;
}
nl[0].n_name = "_tcb"; /* XXX cache */
nl[1].n_name = "";
if (kvm_nlist(sigar->kmem, nl) < 0) {
return errno;
}
status = kread(sigar, &tcb, sizeof(tcb), nl[0].n_value);
if (status != SIGAR_OK) {
return status;
}
for (head = tcb.lh_first; head != NULL;
head = pcbp.inp_list.le_next)
{
status = kread(sigar, &pcbp, sizeof(pcbp), (long)head);
if (status != SIGAR_OK) {
return status;
}
if (!(pcbp.inp_vflag & INP_IPV4)) {
continue;
}
if (pcbp.inp_fport != 0) {
continue;
}
if (ntohs(pcbp.inp_lport) == port) {
sockp = pcbp.inp_socket;
break;
}
}
if (!sockp) {
return ENOENT;
}
pinfo = kvm_getprocs(sigar->kmem, KERN_PROC_PROC, 0, &nentries);
if (!pinfo) {
return errno;
}
for (i=0; i<nentries; i++) {
if (pinfo[i].KI_FLAG & P_SYSTEM) {
continue;
}
if (pinfo[i].KI_FD) {
struct filedesc pfd;
struct file **ofiles, ofile;
int j, osize;
status = kread(sigar, &pfd, sizeof(pfd), (long)pinfo[i].KI_FD);
if (status != SIGAR_OK) {
return status;
}
osize = pfd.fd_nfiles * sizeof(struct file *);
ofiles = malloc(osize); /* XXX reuse */
if (!ofiles) {
return errno;
}
status = kread(sigar, ofiles, osize, (long)pfd.fd_ofiles);
if (status != SIGAR_OK) {
free(ofiles);
return status;
}
for (j=0; j<pfd.fd_nfiles; j++) {
if (!ofiles[j]) {
continue;
}
status = kread(sigar, &ofile, sizeof(ofile), (long)ofiles[j]);
if (status != SIGAR_OK) {
free(ofiles);
return status;
}
if (ofile.f_count == 0) {
continue;
}
if (ofile.f_type == DTYPE_SOCKET &&
(struct socket *)ofile.f_data == sockp)
{
*pid = pinfo[i].KI_PID;
free(ofiles);
return SIGAR_OK;
}
}
free(ofiles);
}
}
return ENOENT;
}
#else
int sigar_proc_port_get(sigar_t *sigar, int protocol,
unsigned long port, sigar_pid_t *pid)
{
return SIGAR_ENOTIMPL;
}
#endif