/* * Copyright (C) [2004, 2005, 2006], Hyperic, Inc. * This file is part of SIGAR. * * SIGAR is free software; you can redistribute it and/or modify * it under the terms version 2 of the GNU General Public License as * published by the Free Software Foundation. This program is distributed * in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A * PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA. */ #include "sigar.h" #include "sigar_private.h" #include "sigar_util.h" #include "sigar_os.h" #ifdef DARWIN #include #include #include #include #include #include #include #include #include #include #include #include #else #include #include #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #define NMIB(mib) (sizeof(mib)/sizeof(mib[0])) #ifdef __FreeBSD__ # if (__FreeBSD_version >= 500013) # define SIGAR_FREEBSD5 # else # define SIGAR_FREEBSD4 # endif #endif #ifdef SIGAR_FREEBSD5 #define KI_FD ki_fd #define KI_PID ki_pid #define KI_PPID ki_ppid #define KI_PRI ki_pri.pri_user #define KI_NICE ki_nice #define KI_COMM ki_comm #define KI_STAT ki_stat #define KI_UID ki_ruid #define KI_GID ki_rgid #define KI_EUID ki_svuid #define KI_EGID ki_svgid #define KI_SIZE ki_size #define KI_RSS ki_rssize #define KI_TSZ ki_tsize #define KI_DSZ ki_dsize #define KI_SSZ ki_ssize #define KI_FLAG ki_flag #define KI_START ki_start #else #define KI_FD kp_proc.p_fd #define KI_PID kp_proc.p_pid #define KI_PPID kp_eproc.e_ppid #define KI_PRI kp_proc.p_priority #define KI_NICE kp_proc.p_nice #define KI_COMM kp_proc.p_comm #define KI_STAT kp_proc.p_stat #define KI_UID kp_eproc.e_pcred.p_ruid #define KI_GID kp_eproc.e_pcred.p_rgid #define KI_EUID kp_eproc.e_pcred.p_svuid #define KI_EGID kp_eproc.e_pcred.p_svgid #define KI_SIZE XXX #define KI_RSS kp_eproc.e_vm.vm_rssize #define KI_TSZ kp_eproc.e_vm.vm_tsize #define KI_DSZ kp_eproc.e_vm.vm_dsize #define KI_SSZ kp_eproc.e_vm.vm_ssize #define KI_FLAG kp_eproc.e_flag #define KI_START kp_proc.p_starttime #endif #ifndef DARWIN #define PROCFS_STATUS(status) \ ((((status) != SIGAR_OK) && !sigar->proc_mounted) ? \ SIGAR_ENOTIMPL : status) static int get_koffsets(sigar_t *sigar) { int i; struct nlist klist[] = { { "_cp_time" }, { "_cnt" }, { NULL } }; if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } kvm_nlist(sigar->kmem, klist); if (klist[0].n_type == 0) { return errno; } for (i=0; ikoffsets[i] = klist[i].n_value; } return SIGAR_OK; } static int kread(sigar_t *sigar, void *data, int size, long offset) { if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } if (kvm_read(sigar->kmem, offset, data, size) != size) { return errno; } return SIGAR_OK; } #endif int sigar_os_open(sigar_t **sigar) { int mib[2]; int ncpu; size_t len; struct timeval boottime; #ifndef DARWIN struct stat sb; #endif len = sizeof(ncpu); mib[0] = CTL_HW; mib[1] = HW_NCPU; if (sysctl(mib, NMIB(mib), &ncpu, &len, NULL, 0) < 0) { return errno; } len = sizeof(boottime); mib[0] = CTL_KERN; mib[1] = KERN_BOOTTIME; if (sysctl(mib, NMIB(mib), &boottime, &len, NULL, 0) < 0) { return errno; } *sigar = malloc(sizeof(**sigar)); #ifdef DARWIN (*sigar)->mach_port = mach_host_self(); #else (*sigar)->kmem = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL); if (stat("/proc/curproc", &sb) < 0) { (*sigar)->proc_mounted = 0; } else { (*sigar)->proc_mounted = 1; } #endif #ifndef DARWIN get_koffsets(*sigar); #endif (*sigar)->ncpu = ncpu; (*sigar)->boot_time = boottime.tv_sec; /* XXX seems off a bit */ (*sigar)->pagesize = getpagesize(); #ifdef __FreeBSD__ (*sigar)->ticks = 100; /* sysconf(_SC_CLK_TCK) == 128 !? */ #else (*sigar)->ticks = sysconf(_SC_CLK_TCK); #endif (*sigar)->last_pid = -1; (*sigar)->pinfo = NULL; return SIGAR_OK; } int sigar_os_close(sigar_t *sigar) { if (sigar->pinfo) { free(sigar->pinfo); } #ifndef DARWIN if (sigar->kmem) { kvm_close(sigar->kmem); } #endif free(sigar); return SIGAR_OK; } char *sigar_os_error_string(sigar_t *sigar, int err) { switch (err) { case SIGAR_EPERM_KMEM: return "Failed to open /dev/kmem for reading"; case SIGAR_EPROC_NOENT: return "/proc filesystem is not mounted"; default: return NULL; } } int sigar_mem_get(sigar_t *sigar, sigar_mem_t *mem) { #ifdef DARWIN vm_statistics_data_t vmstat; kern_return_t status; mach_msg_type_number_t count = sizeof(vmstat) / sizeof(integer_t); uint64_t mem_total; #else unsigned long mem_total; int mem_free; #endif int mib[2]; size_t len; mib[0] = CTL_HW; mib[1] = HW_PAGESIZE; len = sizeof(sigar->pagesize); if (sysctl(mib, NMIB(mib), &sigar->pagesize, &len, NULL, 0) < 0) { return errno; } #ifdef DARWIN mib[1] = HW_MEMSIZE; #else mib[1] = HW_PHYSMEM; #endif len = sizeof(mem_total); if (sysctl(mib, NMIB(mib), &mem_total, &len, NULL, 0) < 0) { return errno; } mem->total = mem_total; #ifdef DARWIN status = host_statistics(sigar->mach_port, HOST_VM_INFO, (host_info_t)&vmstat, &count); if (status != KERN_SUCCESS) { return errno; } mem->free = vmstat.free_count * sigar->pagesize; #else len = sizeof(mem_free); if (sysctlbyname("vm.stats.vm.v_free_count", &mem_free, &len, NULL, 0) == -1) { mem->free = 0; /*XXX*/ } else { mem->free = mem_free; mem->free *= sigar->pagesize; } #endif mem->used = mem->total - mem->free; sigar_mem_calc_ram(sigar, mem); mem->actual_free = mem->free; mem->actual_used = mem->used; return SIGAR_OK; } #define SIGAR_FS_BLOCKS_TO_BYTES(buf, f) \ (((sigar_uint64_t)buf.f * (buf.f_bsize / 512)) >> 1) #define VM_DIR "/private/var/vm" #define SWAPFILE "swapfile" #define NL_SWAPBLIST 0 #define NL_SWDEVT 1 #define NL_NSWDEV 2 #define NL_DMMAX 3 #define SWI_MAXMIB 3 #ifdef SIGAR_FREEBSD5 /* code in this function is based on FreeBSD 5.3 kvm_getswapinfo.c */ static int getswapinfo_sysctl(struct kvm_swap *swap_ary, int swap_max) { int ti, ttl; size_t mibi, len, size; int soid[SWI_MAXMIB]; struct xswdev xsd; struct kvm_swap tot; int unswdev, dmmax; /* XXX this can be optimized by using os_open */ size = sizeof(dmmax); if (sysctlbyname("vm.dmmax", &dmmax, &size, NULL, 0) == -1) { return errno; } mibi = SWI_MAXMIB - 1; if (sysctlnametomib("vm.swap_info", soid, &mibi) == -1) { return errno; } bzero(&tot, sizeof(tot)); for (unswdev = 0;; unswdev++) { soid[mibi] = unswdev; len = sizeof(xsd); if (sysctl(soid, mibi + 1, &xsd, &len, NULL, 0) == -1) { if (errno == ENOENT) { break; } return errno; } #if 0 if (len != sizeof(xsd)) { _kvm_err(kd, kd->program, "struct xswdev has unexpected " "size; kernel and libkvm out of sync?"); return -1; } if (xsd.xsw_version != XSWDEV_VERSION) { _kvm_err(kd, kd->program, "struct xswdev version " "mismatch; kernel and libkvm out of sync?"); return -1; } #endif ttl = xsd.xsw_nblks - dmmax; if (unswdev < swap_max - 1) { bzero(&swap_ary[unswdev], sizeof(swap_ary[unswdev])); swap_ary[unswdev].ksw_total = ttl; swap_ary[unswdev].ksw_used = xsd.xsw_used; swap_ary[unswdev].ksw_flags = xsd.xsw_flags; } tot.ksw_total += ttl; tot.ksw_used += xsd.xsw_used; } ti = unswdev; if (ti >= swap_max) { ti = swap_max - 1; } if (ti >= 0) { swap_ary[ti] = tot; } return SIGAR_OK; } #else #define getswapinfo_sysctl(swap_ary, swap_max) SIGAR_ENOTIMPL #endif int sigar_swap_get(sigar_t *sigar, sigar_swap_t *swap) { #ifdef DARWIN DIR *dirp; struct dirent *ent; char swapfile[SSTRLEN(VM_DIR) + SSTRLEN("/") + SSTRLEN(SWAPFILE) + 12]; struct stat swapstat; struct statfs vmfs; swap->used = swap->total = swap->free = 0; if (!(dirp = opendir(VM_DIR))) { return errno; } /* looking for "swapfile0", "swapfile1", etc. */ while ((ent = readdir(dirp))) { char *ptr = swapfile; if ((ent->d_namlen < SSTRLEN(SWAPFILE)+1) || /* n/a, see comment above */ (ent->d_namlen > SSTRLEN(SWAPFILE)+11)) /* ensure no overflow */ { continue; } if (!strnEQ(ent->d_name, SWAPFILE, SSTRLEN(SWAPFILE))) { continue; } /* sprintf(swapfile, "%s/%s", VM_DIR, ent->d_name) */ memcpy(ptr, VM_DIR, SSTRLEN(VM_DIR)); ptr += SSTRLEN(VM_DIR); *ptr++ = '/'; memcpy(ptr, ent->d_name, ent->d_namlen+1); if (stat(swapfile, &swapstat) < 0) { continue; } swap->used += swapstat.st_size; } closedir(dirp); if (statfs(VM_DIR, &vmfs) < 0) { return errno; } swap->total = SIGAR_FS_BLOCKS_TO_BYTES(vmfs, f_bfree) + swap->used; swap->free = swap->total - swap->used; #else struct kvm_swap kswap[1]; if (getswapinfo_sysctl(kswap, 1) != SIGAR_OK) { if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } if (kvm_getswapinfo(sigar->kmem, kswap, 1, 0) < 0) { return errno; } } if (kswap[0].ksw_total == 0) { swap->total = 0; swap->used = 0; swap->free = 0; return SIGAR_OK; } swap->total = kswap[0].ksw_total * sigar->pagesize; swap->used = kswap[0].ksw_used * sigar->pagesize; swap->free = swap->total - swap->used; #endif return SIGAR_OK; } int sigar_cpu_get(sigar_t *sigar, sigar_cpu_t *cpu) { #ifdef DARWIN kern_return_t status; mach_msg_type_number_t count = HOST_CPU_LOAD_INFO_COUNT; host_cpu_load_info_data_t cpuload; status = host_statistics(sigar->mach_port, HOST_CPU_LOAD_INFO, (host_info_t)&cpuload, &count); if (status != KERN_SUCCESS) { return errno; } cpu->user = SIGAR_TICK2MSEC(cpuload.cpu_ticks[CPU_STATE_USER]); cpu->sys = SIGAR_TICK2MSEC(cpuload.cpu_ticks[CPU_STATE_SYSTEM]); cpu->idle = SIGAR_TICK2MSEC(cpuload.cpu_ticks[CPU_STATE_IDLE]); cpu->nice = SIGAR_TICK2MSEC(cpuload.cpu_ticks[CPU_STATE_NICE]); cpu->wait = 0; /*N/A*/ cpu->total = cpu->user + cpu->nice + cpu->sys + cpu->idle; #else int status; unsigned long cp_time[CPUSTATES]; size_t size = sizeof(cp_time); /* try sysctl first, does not require /dev/kmem perms */ if (sysctlbyname("kern.cp_time", &cp_time, &size, NULL, 0) == -1) { status = kread(sigar, &cp_time, sizeof(cp_time), sigar->koffsets[KOFFSET_CPUINFO]); } else { status = SIGAR_OK; } if (status != SIGAR_OK) { return status; } cpu->user = SIGAR_TICK2MSEC(cp_time[CP_USER]); cpu->nice = SIGAR_TICK2MSEC(cp_time[CP_NICE]); cpu->sys = SIGAR_TICK2MSEC(cp_time[CP_SYS] + cp_time[CP_INTR]); cpu->idle = SIGAR_TICK2MSEC(cp_time[CP_IDLE]); cpu->wait = 0; /*N/A*/ cpu->total = cpu->user + cpu->nice + cpu->sys + cpu->idle; #endif return SIGAR_OK; } int sigar_cpu_list_get(sigar_t *sigar, sigar_cpu_list_t *cpulist) { #ifdef DARWIN kern_return_t status; mach_msg_type_number_t count; processor_cpu_load_info_data_t *cpuload; natural_t i, ncpu; status = host_processor_info(sigar->mach_port, PROCESSOR_CPU_LOAD_INFO, &ncpu, (processor_info_array_t*)&cpuload, &count); if (status != KERN_SUCCESS) { return errno; } sigar_cpu_list_create(cpulist); for (i=0; idata[cpulist->number++]; cpu->user = SIGAR_TICK2MSEC(cpuload[i].cpu_ticks[CPU_STATE_USER]); cpu->sys = SIGAR_TICK2MSEC(cpuload[i].cpu_ticks[CPU_STATE_SYSTEM]); cpu->idle = SIGAR_TICK2MSEC(cpuload[i].cpu_ticks[CPU_STATE_IDLE]); cpu->nice = SIGAR_TICK2MSEC(cpuload[i].cpu_ticks[CPU_STATE_NICE]); cpu->wait = 0; /*N/A*/ cpu->total = cpu->user + cpu->nice + cpu->sys + cpu->idle; } vm_deallocate(mach_task_self(), (vm_address_t)cpuload, count); return SIGAR_OK; #else int status, i; sigar_cpu_t *cpu; sigar_cpu_list_create(cpulist); /* XXX howto multi cpu in freebsd? * for now just report all metrics on the 1st cpu * 0's for the rest */ cpu = &cpulist->data[cpulist->number++]; status = sigar_cpu_get(sigar, cpu); if (status != SIGAR_OK) { return status; } for (i=1; incpu; i++) { SIGAR_CPU_LIST_GROW(cpulist); cpu = &cpulist->data[cpulist->number++]; SIGAR_ZERO(cpu); } return SIGAR_OK; #endif } int sigar_uptime_get(sigar_t *sigar, sigar_uptime_t *uptime) { uptime->uptime = time(NULL) - sigar->boot_time; return SIGAR_OK; } int sigar_loadavg_get(sigar_t *sigar, sigar_loadavg_t *loadavg) { getloadavg(loadavg->loadavg, 3); return SIGAR_OK; } #ifndef KERN_PROC_PROC /* freebsd 4.x */ #define KERN_PROC_PROC KERN_PROC_ALL #endif int sigar_os_proc_list_get(sigar_t *sigar, sigar_proc_list_t *proclist) { #if defined(DARWIN) || defined(SIGAR_FREEBSD5) int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PROC, 0 }; int i, num; size_t len; struct kinfo_proc *proc; if (sysctl(mib, NMIB(mib), NULL, &len, NULL, 0) < 0) { return errno; } proc = malloc(len); if (sysctl(mib, NMIB(mib), proc, &len, NULL, 0) < 0) { free(proc); return errno; } num = len/sizeof(*proc); for (i=0; idata[proclist->number++] = proc[i].KI_PID; } free(proc); return SIGAR_OK; #else int i, num; struct kinfo_proc *proc; if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } proc = kvm_getprocs(sigar->kmem, KERN_PROC_PROC, 0, &num); for (i=0; idata[proclist->number++] = proc[i].KI_PID; } #endif return SIGAR_OK; } static int sigar_get_pinfo(sigar_t *sigar, sigar_pid_t pid) { int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, 0 }; size_t len = sizeof(*sigar->pinfo); time_t timenow = time(NULL); mib[3] = pid; if (sigar->pinfo == NULL) { sigar->pinfo = malloc(len); } if (sigar->last_pid == pid) { if ((timenow - sigar->last_getprocs) < SIGAR_LAST_PROC_EXPIRE) { return SIGAR_OK; } } sigar->last_pid = pid; sigar->last_getprocs = timenow; if (sysctl(mib, NMIB(mib), sigar->pinfo, &len, NULL, 0) < 0) { return errno; } return SIGAR_OK; } int sigar_proc_mem_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_mem_t *procmem) { #ifdef DARWIN mach_port_t task, self = mach_task_self(); kern_return_t status; task_basic_info_data_t info; task_events_info_data_t events; mach_msg_type_number_t count; status = task_for_pid(self, pid, &task); if (status != KERN_SUCCESS) { return errno; } count = TASK_BASIC_INFO_COUNT; status = task_info(task, TASK_BASIC_INFO, (task_info_t)&info, &count); if (status != KERN_SUCCESS) { return errno; } count = TASK_EVENTS_INFO_COUNT; status = task_info(task, TASK_EVENTS_INFO, (task_info_t)&events, &count); if (status == KERN_SUCCESS) { procmem->page_faults = events.faults; } else { procmem->page_faults = SIGAR_FIELD_NOTIMPL; } procmem->minor_faults = SIGAR_FIELD_NOTIMPL; procmem->major_faults = SIGAR_FIELD_NOTIMPL; if (task != self) { mach_port_deallocate(self, task); } procmem->size = info.virtual_size; procmem->resident = info.resident_size; procmem->share = SIGAR_FIELD_NOTIMPL; return SIGAR_OK; #else int status = sigar_get_pinfo(sigar, pid); struct kinfo_proc *pinfo = sigar->pinfo; if (status != SIGAR_OK) { return status; } procmem->size = (pinfo->KI_TSZ + pinfo->KI_DSZ + pinfo->KI_SSZ) * sigar->pagesize; procmem->resident = pinfo->KI_RSS * sigar->pagesize; procmem->share = SIGAR_FIELD_NOTIMPL; procmem->page_faults = SIGAR_FIELD_NOTIMPL; procmem->minor_faults = SIGAR_FIELD_NOTIMPL; procmem->major_faults = SIGAR_FIELD_NOTIMPL; return SIGAR_OK; #endif } int sigar_proc_cred_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_cred_t *proccred) { int status = sigar_get_pinfo(sigar, pid); struct kinfo_proc *pinfo = sigar->pinfo; if (status != SIGAR_OK) { return status; } proccred->uid = pinfo->KI_UID; proccred->gid = pinfo->KI_GID; proccred->euid = pinfo->KI_EUID; proccred->egid = pinfo->KI_EGID; return SIGAR_OK; } #define tv2msec(tv) \ (((sigar_uint64_t)tv.tv_sec * SIGAR_MSEC) + (((sigar_uint64_t)tv.tv_usec) / 1000)) #ifdef DARWIN #define tval2msec(tval) \ ((tval.seconds * SIGAR_MSEC) + (tval.microseconds / 1000)) #define tval2nsec(tval) \ (SIGAR_SEC2NANO((tval).seconds) + SIGAR_MICROSEC2NANO((tval).microseconds)) static int get_proc_times(sigar_pid_t pid, sigar_proc_time_t *time) { unsigned int count; time_value_t utime = {0, 0}, stime = {0, 0}; task_basic_info_data_t ti; task_thread_times_info_data_t tti; task_port_t task, self = mach_task_self(); kern_return_t status; status = task_for_pid(self, pid, &task); if (status != KERN_SUCCESS) { return errno; } count = TASK_BASIC_INFO_COUNT; status = task_info(task, TASK_BASIC_INFO, (task_info_t)&ti, &count); if (status != KERN_SUCCESS) { if (task != self) { mach_port_deallocate(self, task); } return errno; } count = TASK_THREAD_TIMES_INFO_COUNT; status = task_info(task, TASK_THREAD_TIMES_INFO, (task_info_t)&tti, &count); if (status != KERN_SUCCESS) { if (task != self) { mach_port_deallocate(self, task); } return errno; } time_value_add(&utime, &ti.user_time); time_value_add(&stime, &ti.system_time); time_value_add(&utime, &tti.user_time); time_value_add(&stime, &tti.system_time); time->user = tval2msec(utime); time->sys = tval2msec(stime); time->total = time->user + time->sys; return SIGAR_OK; } #endif int sigar_proc_time_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_time_t *proctime) { #ifdef SIGAR_FREEBSD4 struct user user; #endif int status = sigar_get_pinfo(sigar, pid); struct kinfo_proc *pinfo = sigar->pinfo; if (status != SIGAR_OK) { return status; } #if defined(DARWIN) if ((status = get_proc_times(pid, proctime)) != SIGAR_OK) { return status; } proctime->start_time = tv2msec(pinfo->KI_START); #elif defined(SIGAR_FREEBSD5) proctime->user = tv2msec(pinfo->ki_rusage.ru_utime); proctime->sys = tv2msec(pinfo->ki_rusage.ru_stime); proctime->total = proctime->user + proctime->sys; proctime->start_time = tv2msec(pinfo->KI_START); #else if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } status = kread(sigar, &user, sizeof(user), (u_long)pinfo->kp_proc.p_addr); if (status != SIGAR_OK) { return status; } proctime->user = tv2msec(user.u_stats.p_ru.ru_utime); proctime->sys = tv2msec(user.u_stats.p_ru.ru_stime); proctime->total = proctime->user + proctime->sys; proctime->start_time = tv2msec(user.u_stats.p_start); #endif return SIGAR_OK; } #ifdef DARWIN static int sigar_proc_threads_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_state_t *procstate) { mach_port_t task, self = mach_task_self(); kern_return_t status; thread_array_t threads; mach_msg_type_number_t count; status = task_for_pid(self, pid, &task); if (status != KERN_SUCCESS) { return errno; } status = task_threads(task, &threads, &count); if (status != KERN_SUCCESS) { return errno; } procstate->threads = count; vm_deallocate(self, (vm_address_t)threads, sizeof(thread_t) * count); return SIGAR_OK; } #endif int sigar_proc_state_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_state_t *procstate) { int status = sigar_get_pinfo(sigar, pid); struct kinfo_proc *pinfo = sigar->pinfo; if (status != SIGAR_OK) { return status; } SIGAR_SSTRCPY(procstate->name, pinfo->KI_COMM); procstate->ppid = pinfo->KI_PPID; procstate->priority = pinfo->KI_PRI; procstate->nice = pinfo->KI_NICE; procstate->tty = SIGAR_FIELD_NOTIMPL; /*XXX*/ procstate->threads = SIGAR_FIELD_NOTIMPL; procstate->processor = SIGAR_FIELD_NOTIMPL; #ifdef DARWIN sigar_proc_threads_get(sigar, pid, procstate); #endif switch (pinfo->KI_STAT) { case SIDL: procstate->state = 'D'; break; case SRUN: procstate->state = 'R'; break; case SSLEEP: procstate->state = 'S'; break; case SSTOP: procstate->state = 'T'; break; case SZOMB: procstate->state = 'Z'; break; } return SIGAR_OK; } #if defined(DARWIN) typedef struct { char buffer[8096], *ptr, *end; int count; } sigar_kern_proc_args_t; /* re-usable hack for use by proc_args and proc_env */ static int sigar_kern_proc_args_get(sigar_pid_t pid, char *exe, sigar_kern_proc_args_t *kargs) { /* * derived from: * http://darwinsource.opendarwin.org/10.4.1/adv_cmds-79.1/ps.tproj/print.c */ int mib[3], len; size_t size = sizeof(kargs->buffer); char *args = kargs->buffer; mib[0] = CTL_KERN; mib[1] = KERN_PROCARGS2; mib[2] = pid; if (sysctl(mib, NMIB(mib), args, &size, NULL, 0) < 0) { return errno; } kargs->end = &args[size]; memcpy(&kargs->count, args, sizeof(kargs->count)); kargs->ptr = args + sizeof(kargs->count); len = strlen(kargs->ptr); if (exe) { memcpy(exe, kargs->ptr, len+1); } kargs->ptr += len+1; if (kargs->ptr == kargs->end) { return exe ? SIGAR_OK : ENOENT; } for (; kargs->ptr < kargs->end; kargs->ptr++) { if (*kargs->ptr != '\0') { break; /* start of argv[0] */ } } if (kargs->ptr == kargs->end) { return exe ? SIGAR_OK : ENOENT; } return SIGAR_OK; } static int kern_proc_args_skip_argv(sigar_kern_proc_args_t *kargs) { char *ptr = kargs->ptr; char *end = kargs->end; int count = kargs->count; /* skip over argv */ while ((ptr < end) && (count-- > 0)) { int alen = strlen(ptr)+1; ptr += alen; } kargs->ptr = ptr; kargs->end = end; kargs->count = 0; if (ptr >= end) { return ENOENT; } return SIGAR_OK; } #endif int sigar_proc_args_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_args_t *procargs) { #if defined(DARWIN) int status, count; sigar_kern_proc_args_t kargs; char *ptr, *end; status = sigar_kern_proc_args_get(pid, NULL, &kargs); if (status != SIGAR_OK) { return status; } count = kargs.count; ptr = kargs.ptr; end = kargs.end; sigar_proc_args_create(procargs); while ((ptr < end) && (count-- > 0)) { int slen = strlen(ptr); int alen = slen+1; char *arg; /* * trim trailing whitespace. * seen w/ postgresql, probably related * to messing with argv[0] */ while (*(ptr + (slen-1)) == ' ') { if (--slen <= 0) { break; } } arg = malloc(slen+1); SIGAR_PROC_ARGS_GROW(procargs); memcpy(arg, ptr, slen); *(arg+slen) = '\0'; procargs->data[procargs->number++] = arg; ptr += alen; } return SIGAR_OK; #else /* ARG_MAX in FreeBSD 6.0 == 262144, which blows up the stack */ #define SIGAR_ARG_MAX 65536 char buffer[SIGAR_ARG_MAX+1], *ptr=buffer; size_t len = sizeof(buffer); int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_ARGS, 0 }; mib[3] = pid; if (sysctl(mib, NMIB(mib), buffer, &len, NULL, 0) < 0) { return errno; } sigar_proc_args_create(procargs); if (len == 0) { procargs->number = 0; return SIGAR_OK; } buffer[len] = '\0'; while (len > 0) { int alen = strlen(ptr)+1; char *arg = malloc(alen); SIGAR_PROC_ARGS_GROW(procargs); memcpy(arg, ptr, alen); procargs->data[procargs->number++] = arg; len -= alen; if (len > 0) { ptr += alen; } } return SIGAR_OK; #endif } int sigar_proc_env_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_env_t *procenv) { #ifdef DARWIN int status, count; sigar_kern_proc_args_t kargs; char *ptr, *end; status = sigar_kern_proc_args_get(pid, NULL, &kargs); if (status != SIGAR_OK) { return status; } status = kern_proc_args_skip_argv(&kargs); if (status != SIGAR_OK) { return status; } count = kargs.count; ptr = kargs.ptr; end = kargs.end; /* into environ */ while (ptr < end) { char *val = strchr(ptr, '='); int klen, vlen, status; char key[256]; /* XXX is there a max key size? */ if (val == NULL) { /* not key=val format */ break; } klen = val - ptr; SIGAR_SSTRCPY(key, ptr); key[klen] = '\0'; ++val; vlen = strlen(val); status = procenv->env_getter(procenv->data, key, klen, val, vlen); if (status != SIGAR_OK) { /* not an error; just stop iterating */ break; } ptr += (klen + 1 + vlen + 1); if (*ptr == '\0') { break; } } return SIGAR_OK; #else char **env; struct kinfo_proc *pinfo; int num; if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } pinfo = kvm_getprocs(sigar->kmem, KERN_PROC_PID, pid, &num); if (!pinfo || (num < 1)) { return errno; } if (!(env = kvm_getenvv(sigar->kmem, pinfo, 9086))) { return errno; } while (*env) { char *ptr = *env++; char *val = strchr(ptr, '='); int klen, vlen, status; char key[128]; /* XXX is there a max key size? */ if (val == NULL) { /* not key=val format */ procenv->env_getter(procenv->data, ptr, strlen(ptr), NULL, 0); break; } klen = val - ptr; SIGAR_SSTRCPY(key, ptr); key[klen] = '\0'; ++val; vlen = strlen(val); status = procenv->env_getter(procenv->data, key, klen, val, vlen); if (status != SIGAR_OK) { /* not an error; just stop iterating */ break; } ptr += (klen + 1 + vlen + 1); } return SIGAR_OK; #endif } int sigar_proc_fd_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_fd_t *procfd) { #ifndef DARWIN int status; struct kinfo_proc *pinfo; struct filedesc filed; #if 0 struct file **ofiles; int nfiles, i; size_t size; #endif if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } if ((status = sigar_get_pinfo(sigar, pid)) != SIGAR_OK) { return status; } pinfo = sigar->pinfo; status = kread(sigar, &filed, sizeof(filed), (u_long)pinfo->KI_FD); if (status != SIGAR_OK) { return status; } #if 0 nfiles = filed.fd_lastfile+1; size = sizeof(*ofiles) * nfiles; ofiles = malloc(size); status = kread(sigar, ofiles, size, (u_long)filed.fd_ofiles); if (status != SIGAR_OK) { free(ofiles); return status; } procfd->total = 0; for (i=0; itotal++; } free(ofiles); #else /* seems the same as the above */ procfd->total = filed.fd_lastfile; #endif return SIGAR_OK; #else return SIGAR_ENOTIMPL; #endif } int sigar_proc_exe_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_exe_t *procexe) { #ifdef DARWIN int status; sigar_kern_proc_args_t kargs; status = sigar_kern_proc_args_get(pid, procexe->name, &kargs); if (status != SIGAR_OK) { return status; } procexe->cwd[0] = '\0'; procexe->root[0] = '\0'; /* attempt to determine cwd from $PWD */ status = kern_proc_args_skip_argv(&kargs); if (status == SIGAR_OK) { char *ptr = kargs.ptr; char *end = kargs.end; /* into environ */ while (ptr < end) { int len = strlen(ptr); if ((len > 4) && (ptr[0] == 'P') && (ptr[1] == 'W') && (ptr[2] == 'D') && (ptr[3] == '=')) { memcpy(procexe->cwd, ptr+4, len-3); break; } ptr += len+1; } } return SIGAR_OK; #else int len; char name[1024]; procexe->cwd[0] = '\0'; procexe->root[0] = '\0'; (void)SIGAR_PROC_FILENAME(name, pid, "/file"); if ((len = readlink(name, procexe->name, sizeof(procexe->name)-1)) < 0) { return PROCFS_STATUS(errno); } procexe->name[len] = '\0'; return SIGAR_OK; #endif } int sigar_proc_modules_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_modules_t *procmods) { return SIGAR_ENOTIMPL; } #define SIGAR_MICROSEC2NANO(s) \ ((sigar_uint64_t)(s) * (sigar_uint64_t)1000) #define TIME_NSEC(t) \ (SIGAR_SEC2NANO((t).tv_sec) + SIGAR_MICROSEC2NANO((t).tv_usec)) int sigar_thread_cpu_get(sigar_t *sigar, sigar_uint64_t id, sigar_thread_cpu_t *cpu) { #ifdef DARWIN mach_port_t self = mach_thread_self(); thread_basic_info_data_t info; mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT; kern_return_t status; status = thread_info(self, THREAD_BASIC_INFO, (thread_info_t)&info, &count); if (status != KERN_SUCCESS) { return errno; } mach_port_deallocate(mach_task_self(), self); cpu->user = tval2nsec(info.user_time); cpu->sys = tval2nsec(info.system_time); cpu->total = cpu->user + cpu->sys; #else /* XXX this is not per-thread, it is for the whole-process. * just want to use for the shell time command at the moment. */ struct rusage usage; getrusage(RUSAGE_SELF, &usage); cpu->user = TIME_NSEC(usage.ru_utime); cpu->sys = TIME_NSEC(usage.ru_stime); cpu->total = TIME_NSEC(usage.ru_utime) + TIME_NSEC(usage.ru_stime); #endif return SIGAR_OK; } int sigar_os_fs_type_get(sigar_file_system_t *fsp) { char *type = fsp->sys_type_name; /* see sys/disklabel.h */ switch (*type) { case 'h': if (strEQ(type, "hfs")) { fsp->type = SIGAR_FSTYPE_LOCAL_DISK; } break; case 'u': if (strEQ(type, "ufs")) { fsp->type = SIGAR_FSTYPE_LOCAL_DISK; } break; } return fsp->type; } int sigar_file_system_list_get(sigar_t *sigar, sigar_file_system_list_t *fslist) { struct statfs *fs; int num, i; long len; int is_debug = SIGAR_LOG_IS_DEBUG(sigar); if ((num = getfsstat(NULL, 0, MNT_NOWAIT)) < 0) { return errno; } len = sizeof(*fs) * num; fs = malloc(len); if ((num = getfsstat(fs, len, MNT_NOWAIT)) < 0) { return errno; } sigar_file_system_list_create(fslist); for (i=0; idata[fslist->number++]; SIGAR_SSTRCPY(fsp->dir_name, fs[i].f_mntonname); SIGAR_SSTRCPY(fsp->dev_name, fs[i].f_mntfromname); SIGAR_SSTRCPY(fsp->sys_type_name, fs[i].f_fstypename); sigar_fs_type_init(fsp); } return SIGAR_OK; } int sigar_file_system_usage_get(sigar_t *sigar, const char *dirname, sigar_file_system_usage_t *fsusage) { struct statfs buf; if (statfs(dirname, &buf) < 0) { return errno; } fsusage->total = SIGAR_FS_BLOCKS_TO_BYTES(buf, f_blocks); fsusage->free = SIGAR_FS_BLOCKS_TO_BYTES(buf, f_bfree); fsusage->avail = SIGAR_FS_BLOCKS_TO_BYTES(buf, f_bavail); fsusage->used = fsusage->total - fsusage->free; fsusage->files = buf.f_files; fsusage->free_files = buf.f_ffree; fsusage->use_percent = sigar_file_system_usage_calc_used(sigar, fsusage); #ifdef DARWIN SIGAR_DISK_STATS_NOTIMPL(fsusage); #else fsusage->disk_reads = buf.f_syncreads + buf.f_asyncreads; fsusage->disk_writes = buf.f_syncwrites + buf.f_asyncwrites; fsusage->disk_read_bytes = SIGAR_FIELD_NOTIMPL; fsusage->disk_write_bytes = SIGAR_FIELD_NOTIMPL; fsusage->disk_queue = SIGAR_FIELD_NOTIMPL; #endif return SIGAR_OK; } #ifdef DARWIN #define CTL_HW_FREQ "hw.cpufrequency" #else /* XXX FreeBSD 5.x+ only? */ #define CTL_HW_FREQ "machdep.tsc_freq" #endif int sigar_cpu_info_list_get(sigar_t *sigar, sigar_cpu_info_list_t *cpu_infos) { int i; unsigned int mhz; int cache_size=SIGAR_FIELD_NOTIMPL; size_t size; char model[128], vendor[128], *ptr; size = sizeof(mhz); #ifdef DARWIN { int mib[] = { CTL_HW, HW_CPU_FREQ }; size = sizeof(mhz); if (sysctl(mib, NMIB(mib), &mhz, &size, NULL, 0) < 0) { mhz = SIGAR_FIELD_NOTIMPL; } } #else if (sysctlbyname(CTL_HW_FREQ, &mhz, &size, NULL, 0) < 0) { mhz = SIGAR_FIELD_NOTIMPL; } #endif if (mhz != SIGAR_FIELD_NOTIMPL) { mhz /= 1000000; } size = sizeof(model); if (sysctlbyname("hw.model", &model, &size, NULL, 0) < 0) { int mib[] = { CTL_HW, HW_MODEL }; size = sizeof(model); if (sysctl(mib, NMIB(mib), &model[0], &size, NULL, 0) < 0) { #ifdef DARWIN strcpy(model, "powerpc"); #else strcpy(model, "Unknown"); #endif } } if (mhz == SIGAR_FIELD_NOTIMPL) { /* freebsd4 */ mhz = sigar_cpu_mhz_from_model(model); } #ifdef DARWIN size = sizeof(vendor); if (sysctlbyname("machdep.cpu.vendor", &vendor, &size, NULL, 0) < 0) { SIGAR_SSTRCPY(vendor, "Apple"); } else { /* GenuineIntel -> Intel */ if (strstr(vendor, "Intel")) { SIGAR_SSTRCPY(vendor, "Intel"); } } #endif if ((ptr = strchr(model, ' '))) { *ptr = '\0'; if (strstr(model, "Intel")) { SIGAR_SSTRCPY(vendor, "Intel"); } else if (strstr(model, "AMD")) { SIGAR_SSTRCPY(vendor, "AMD"); } else { SIGAR_SSTRCPY(vendor, "Unknown"); } SIGAR_SSTRCPY(model, ptr+1); } #ifdef DARWIN { int mib[] = { CTL_HW, HW_L2CACHESIZE }; /* in bytes */ size = sizeof(cache_size); if (sysctl(mib, NMIB(mib), &cache_size, &size, NULL, 0) < 0) { cache_size = SIGAR_FIELD_NOTIMPL; } else { cache_size /= 1024; /* convert to KB */ } } #endif sigar_cpu_info_list_create(cpu_infos); for (i=0; incpu; i++) { sigar_cpu_info_t *info; SIGAR_CPU_INFO_LIST_GROW(cpu_infos); info = &cpu_infos->data[cpu_infos->number++]; SIGAR_SSTRCPY(info->vendor, vendor); SIGAR_SSTRCPY(info->model, model); sigar_cpu_model_adjust(sigar, info); info->mhz = mhz; info->cache_size = cache_size; } return SIGAR_OK; } #define rt_s_addr(sa) ((struct sockaddr_in *)(sa))->sin_addr.s_addr #ifndef SA_SIZE #define SA_SIZE(sa) \ ( (!(sa) || ((struct sockaddr *)(sa))->sa_len == 0) ? \ sizeof(long) : \ 1 + ( (((struct sockaddr *)(sa))->sa_len - 1) | (sizeof(long) - 1) ) ) #endif int sigar_net_route_list_get(sigar_t *sigar, sigar_net_route_list_t *routelist) { size_t needed; int bit; char *buf, *next, *lim; struct rt_msghdr *rtm; int mib[6] = { CTL_NET, PF_ROUTE, 0, 0, NET_RT_DUMP, 0 }; if (sysctl(mib, NMIB(mib), NULL, &needed, NULL, 0) < 0) { return errno; } buf = malloc(needed); if (sysctl(mib, NMIB(mib), buf, &needed, NULL, 0) < 0) { free(buf); return errno; } sigar_net_route_list_create(routelist); lim = buf + needed; for (next = buf; next < lim; next += rtm->rtm_msglen) { struct sockaddr *sa; sigar_net_route_t *route; rtm = (struct rt_msghdr *)next; if (rtm->rtm_type != RTM_GET) { continue; } sa = (struct sockaddr *)(rtm + 1); if (sa->sa_family != AF_INET) { continue; } SIGAR_NET_ROUTE_LIST_GROW(routelist); route = &routelist->data[routelist->number++]; SIGAR_ZERO(route); route->flags = rtm->rtm_flags; for (bit=RTA_DST; bit && ((char *)sa < lim); bit <<= 1) { if ((rtm->rtm_addrs & bit) == 0) { continue; } switch (bit) { case RTA_DST: sigar_net_address_set(route->destination, rt_s_addr(sa)); break; case RTA_GATEWAY: if (sa->sa_family == AF_INET) { sigar_net_address_set(route->gateway, rt_s_addr(sa)); } break; case RTA_NETMASK: sigar_net_address_set(route->mask, rt_s_addr(sa)); break; case RTA_IFA: break; } sa = (struct sockaddr *)((char *)sa + SA_SIZE(sa)); } } free(buf); return SIGAR_OK; } typedef enum { IFMSG_ITER_LIST, IFMSG_ITER_GET } ifmsg_iter_e; typedef struct { const char *name; ifmsg_iter_e type; union { sigar_net_interface_list_t *iflist; struct if_msghdr *ifm; } data; } ifmsg_iter_t; static int sigar_ifmsg_init(sigar_t *sigar) { int mib[] = { CTL_NET, PF_ROUTE, 0, AF_INET, NET_RT_IFLIST, 0 }; size_t len; if (sysctl(mib, NMIB(mib), NULL, &len, NULL, 0) < 0) { return errno; } if (sigar->ifconf_len < len) { sigar->ifconf_buf = realloc(sigar->ifconf_buf, len); sigar->ifconf_len = len; } if (sysctl(mib, NMIB(mib), sigar->ifconf_buf, &len, NULL, 0) < 0) { return errno; } return SIGAR_OK; } static int sigar_ifmsg_iter(sigar_t *sigar, ifmsg_iter_t *iter) { char *end = sigar->ifconf_buf + sigar->ifconf_len; char *ptr = sigar->ifconf_buf; if (iter->type == IFMSG_ITER_LIST) { sigar_net_interface_list_create(iter->data.iflist); } while (ptr < end) { char *name; struct sockaddr_dl *sdl; struct if_msghdr *ifm = (struct if_msghdr *)ptr; if (ifm->ifm_type != RTM_IFINFO) { break; } ptr += ifm->ifm_msglen; while (ptr < end) { struct if_msghdr *next = (struct if_msghdr *)ptr; if (next->ifm_type != RTM_NEWADDR) { break; } ptr += next->ifm_msglen; } sdl = (struct sockaddr_dl *)(ifm + 1); if (sdl->sdl_family != AF_LINK) { continue; } if (!((sdl->sdl_type == IFT_ETHER) || (sdl->sdl_type == IFT_LOOP))) { continue; /* XXX deal w/ other weirdo interfaces */ } switch (iter->type) { case IFMSG_ITER_LIST: SIGAR_NET_IFLIST_GROW(iter->data.iflist); name = malloc(sdl->sdl_nlen+1); memcpy(name, sdl->sdl_data, sdl->sdl_nlen+1); iter->data.iflist->data[iter->data.iflist->number++] = name; break; case IFMSG_ITER_GET: if (strEQ(iter->name, sdl->sdl_data)) { iter->data.ifm = ifm; return SIGAR_OK; } } } switch (iter->type) { case IFMSG_ITER_LIST: return SIGAR_OK; case IFMSG_ITER_GET: default: return ENXIO; } } int sigar_net_interface_list_get(sigar_t *sigar, sigar_net_interface_list_t *iflist) { int status; ifmsg_iter_t iter; if ((status = sigar_ifmsg_init(sigar)) != SIGAR_OK) { return status; } iter.type = IFMSG_ITER_LIST; iter.data.iflist = iflist; return sigar_ifmsg_iter(sigar, &iter); } int sigar_net_interface_config_get(sigar_t *sigar, const char *name, sigar_net_interface_config_t *ifconfig) { int sock; int status; ifmsg_iter_t iter; struct if_msghdr *ifm; struct sockaddr_dl *sdl; struct ifreq ifr; if (!name) { return sigar_net_interface_config_primary_get(sigar, ifconfig); } if (sigar->ifconf_len == 0) { if ((status = sigar_ifmsg_init(sigar)) != SIGAR_OK) { return status; } } SIGAR_ZERO(ifconfig); iter.type = IFMSG_ITER_GET; iter.name = name; if ((status = sigar_ifmsg_iter(sigar, &iter)) != SIGAR_OK) { return status; } if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { return errno; } ifm = iter.data.ifm; SIGAR_SSTRCPY(ifconfig->name, name); sdl = (struct sockaddr_dl *)(ifm + 1); sigar_net_address_mac_set(ifconfig->hwaddr, LLADDR(sdl), sdl->sdl_alen); ifconfig->flags = ifm->ifm_flags; ifconfig->mtu = ifm->ifm_data.ifi_mtu; ifconfig->metric = ifm->ifm_data.ifi_metric; SIGAR_SSTRCPY(ifr.ifr_name, name); #define ifr_s_addr(ifr) \ ((struct sockaddr_in *)&ifr.ifr_addr)->sin_addr.s_addr if (!ioctl(sock, SIOCGIFADDR, &ifr)) { sigar_net_address_set(ifconfig->address, ifr_s_addr(ifr)); } if (!ioctl(sock, SIOCGIFNETMASK, &ifr)) { sigar_net_address_set(ifconfig->netmask, ifr_s_addr(ifr)); } if (ifconfig->flags & IFF_LOOPBACK) { sigar_net_address_set(ifconfig->destination, ifconfig->address.addr.in); sigar_net_address_set(ifconfig->broadcast, 0); SIGAR_SSTRCPY(ifconfig->type, SIGAR_NIC_LOOPBACK); } else { if (!ioctl(sock, SIOCGIFDSTADDR, &ifr)) { sigar_net_address_set(ifconfig->destination, ifr_s_addr(ifr)); } if (!ioctl(sock, SIOCGIFBRDADDR, &ifr)) { sigar_net_address_set(ifconfig->broadcast, ifr_s_addr(ifr)); } SIGAR_SSTRCPY(ifconfig->type, SIGAR_NIC_ETHERNET); } close(sock); /* XXX can we get a better description like win32? */ SIGAR_SSTRCPY(ifconfig->description, ifconfig->name); return SIGAR_OK; } int sigar_net_interface_stat_get(sigar_t *sigar, const char *name, sigar_net_interface_stat_t *ifstat) { int status; ifmsg_iter_t iter; struct if_msghdr *ifm; if ((status = sigar_ifmsg_init(sigar)) != SIGAR_OK) { return status; } iter.type = IFMSG_ITER_GET; iter.name = name; if ((status = sigar_ifmsg_iter(sigar, &iter)) != SIGAR_OK) { return status; } ifm = iter.data.ifm; ifstat->rx_bytes = ifm->ifm_data.ifi_ibytes; ifstat->rx_packets = ifm->ifm_data.ifi_ipackets; ifstat->rx_errors = ifm->ifm_data.ifi_ierrors; ifstat->rx_dropped = ifm->ifm_data.ifi_iqdrops; ifstat->rx_overruns = SIGAR_FIELD_NOTIMPL; ifstat->rx_frame = SIGAR_FIELD_NOTIMPL; ifstat->tx_bytes = ifm->ifm_data.ifi_obytes; ifstat->tx_packets = ifm->ifm_data.ifi_opackets; ifstat->tx_errors = ifm->ifm_data.ifi_oerrors; ifstat->tx_collisions = ifm->ifm_data.ifi_collisions; ifstat->tx_dropped = SIGAR_FIELD_NOTIMPL; ifstat->tx_overruns = SIGAR_FIELD_NOTIMPL; ifstat->tx_carrier = SIGAR_FIELD_NOTIMPL; ifstat->speed = ifm->ifm_data.ifi_baudrate; return SIGAR_OK; } #include #include #include #include #include static int net_connection_get(sigar_net_connection_walker_t *walker, int proto) { int flags = walker->flags; int type, istcp = 0; char *buf; const char *mibvar; struct tcpcb *tp = NULL; struct inpcb *inp; struct xinpgen *xig, *oxig; struct xsocket *so; size_t len; switch (proto) { case IPPROTO_TCP: mibvar = "net.inet.tcp.pcblist"; istcp = 1; type = SIGAR_NETCONN_TCP; break; case IPPROTO_UDP: mibvar = "net.inet.udp.pcblist"; type = SIGAR_NETCONN_UDP; break; default: mibvar = "net.inet.raw.pcblist"; type = SIGAR_NETCONN_RAW; break; } len = 0; if (sysctlbyname(mibvar, 0, &len, 0, 0) < 0) { return errno; } if ((buf = malloc(len)) == 0) { return errno; } if (sysctlbyname(mibvar, buf, &len, 0, 0) < 0) { free(buf); return errno; } oxig = xig = (struct xinpgen *)buf; for (xig = (struct xinpgen *)((char *)xig + xig->xig_len); xig->xig_len > sizeof(struct xinpgen); xig = (struct xinpgen *)((char *)xig + xig->xig_len)) { if (istcp) { struct xtcpcb *cb = (struct xtcpcb *)xig; tp = &cb->xt_tp; inp = &cb->xt_inp; so = &cb->xt_socket; } else { struct xinpcb *cb = (struct xinpcb *)xig; inp = &cb->xi_inp; so = &cb->xi_socket; } if (so->xso_protocol != proto) { continue; } if (inp->inp_gencnt > oxig->xig_gen) { continue; } if ((((flags & SIGAR_NETCONN_SERVER) && so->so_qlimit) || ((flags & SIGAR_NETCONN_CLIENT) && !so->so_qlimit))) { sigar_net_connection_t conn; SIGAR_ZERO(&conn); if (inp->inp_vflag & INP_IPV6) { sigar_net_address6_set(conn.local_address, &inp->in6p_laddr.s6_addr); sigar_net_address6_set(conn.remote_address, &inp->in6p_faddr.s6_addr); } else { sigar_net_address_set(conn.local_address, inp->inp_laddr.s_addr); sigar_net_address_set(conn.remote_address, inp->inp_faddr.s_addr); } conn.local_port = ntohs(inp->inp_lport); conn.remote_port = ntohs(inp->inp_fport); conn.receive_queue = so->so_rcv.sb_cc; conn.send_queue = so->so_snd.sb_cc; conn.type = type; if (!istcp) { conn.state = SIGAR_TCP_UNKNOWN; if (walker->add_connection(walker, &conn) != SIGAR_OK) { break; } continue; } switch (tp->t_state) { case TCPS_CLOSED: conn.state = SIGAR_TCP_CLOSE; break; case TCPS_LISTEN: conn.state = SIGAR_TCP_LISTEN; break; case TCPS_SYN_SENT: conn.state = SIGAR_TCP_SYN_SENT; break; case TCPS_SYN_RECEIVED: conn.state = SIGAR_TCP_SYN_RECV; break; case TCPS_ESTABLISHED: conn.state = SIGAR_TCP_ESTABLISHED; break; case TCPS_CLOSE_WAIT: conn.state = SIGAR_TCP_CLOSE_WAIT; break; case TCPS_FIN_WAIT_1: conn.state = SIGAR_TCP_FIN_WAIT1; break; case TCPS_CLOSING: conn.state = SIGAR_TCP_CLOSING; break; case TCPS_LAST_ACK: conn.state = SIGAR_TCP_LAST_ACK; break; case TCPS_FIN_WAIT_2: conn.state = SIGAR_TCP_FIN_WAIT2; break; case TCPS_TIME_WAIT: conn.state = SIGAR_TCP_TIME_WAIT; break; default: conn.state = SIGAR_TCP_UNKNOWN; break; } if (walker->add_connection(walker, &conn) != SIGAR_OK) { break; } } } free(buf); return SIGAR_OK; } int sigar_net_connection_walk(sigar_net_connection_walker_t *walker) { int flags = walker->flags; int status; if (flags & SIGAR_NETCONN_TCP) { status = net_connection_get(walker, IPPROTO_TCP); if (status != SIGAR_OK) { return status; } } if (flags & SIGAR_NETCONN_UDP) { status = net_connection_get(walker, IPPROTO_UDP); if (status != SIGAR_OK) { return status; } } return SIGAR_OK; } #ifndef DARWIN #define _KERNEL #include #undef _KERNEL /* derived from * /usr/ports/security/pidentd/work/pidentd-3.0.16/src/k_freebsd2.c */ int sigar_proc_port_get(sigar_t *sigar, int protocol, unsigned long port, sigar_pid_t *pid) { struct nlist nl[2]; struct inpcbhead tcb; struct socket *sockp = NULL; struct kinfo_proc *pinfo; struct inpcb *head, pcbp; int i, nentries, status; if (protocol != SIGAR_NETCONN_TCP) { return SIGAR_ENOTIMPL; } if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } nl[0].n_name = "_tcb"; /* XXX cache */ nl[1].n_name = ""; if (kvm_nlist(sigar->kmem, nl) < 0) { return errno; } status = kread(sigar, &tcb, sizeof(tcb), nl[0].n_value); if (status != SIGAR_OK) { return status; } for (head = tcb.lh_first; head != NULL; head = pcbp.inp_list.le_next) { status = kread(sigar, &pcbp, sizeof(pcbp), (long)head); if (status != SIGAR_OK) { return status; } if (!(pcbp.inp_vflag & INP_IPV4)) { continue; } if (pcbp.inp_fport != 0) { continue; } if (ntohs(pcbp.inp_lport) == port) { sockp = pcbp.inp_socket; break; } } if (!sockp) { return ENOENT; } pinfo = kvm_getprocs(sigar->kmem, KERN_PROC_PROC, 0, &nentries); if (!pinfo) { return errno; } for (i=0; iname, "MacOSX"); SIGAR_SSTRCPY(sysinfo->vendor_name, "Mac OS X"); SIGAR_SSTRCPY(sysinfo->vendor, "Apple"); if (Gestalt(gestaltSystemVersion, &version) == noErr) { if (version >= 0x00001040) { Gestalt('sys1' /*gestaltSystemVersionMajor*/, &version_major); Gestalt('sys2' /*gestaltSystemVersionMinor*/, &version_minor); Gestalt('sys3' /*gestaltSystemVersionBugFix*/, &version_fix); } else { version_fix = version & 0xf; version >>= 4; version_minor = version & 0xf; version >>= 4; version_major = version - (version >> 4) * 6; } } else { return SIGAR_ENOTIMPL; } snprintf(sysinfo->vendor_version, sizeof(sysinfo->vendor_version), "%ld.%ld", version_major, version_minor); snprintf(sysinfo->version, sizeof(sysinfo->version), "%s.%ld", sysinfo->vendor_version, version_fix); if (version_major == 10) { switch (version_minor) { case 2: codename = "Jaguar"; break; case 3: codename = "Panther"; break; case 4: codename = "Tiger"; break; case 5: codename = "Leopard"; break; default: codename = "Unknown"; break; } } else { return SIGAR_ENOTIMPL; } SIGAR_SSTRCPY(sysinfo->vendor_code_name, codename); snprintf(sysinfo->description, sizeof(sysinfo->description), "%s %s", sysinfo->vendor_name, sysinfo->vendor_code_name); #else char *ptr; SIGAR_SSTRCPY(sysinfo->name, "FreeBSD"); SIGAR_SSTRCPY(sysinfo->vendor_name, sysinfo->name); SIGAR_SSTRCPY(sysinfo->vendor, sysinfo->name); SIGAR_SSTRCPY(sysinfo->vendor_version, sysinfo->version); if ((ptr = strstr(sysinfo->vendor_version, "-"))) { /* STABLE, RELEASE, CURRENT */ *ptr++ = '\0'; SIGAR_SSTRCPY(sysinfo->vendor_code_name, ptr); } snprintf(sysinfo->description, sizeof(sysinfo->description), "%s %s", sysinfo->name, sysinfo->version); #endif return SIGAR_OK; }