#include "sigar.h" #include "sigar_private.h" #include "sigar_util.h" #include "sigar_os.h" #ifdef DARWIN #include #include #include #else #include #include #include #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #define NMIB(mib) (sizeof(mib)/sizeof(mib[0])) #if defined (__FreeBSD__) && (__FreeBSD_version >= 500013) #define KI_PID ki_pid #define KI_PPID ki_ppid #define KI_PRI ki_pri.pri_user #define KI_NICE ki_nice #define KI_COMM ki_comm #define KI_STAT ki_stat #define KI_UID ki_ruid #define KI_GID ki_rgid #define KI_EUID ki_svuid #define KI_EGID ki_svgid #define KI_SIZE ki_size #define KI_RSS ki_rssize #define KI_TSZ ki_tsize #define KI_DSZ ki_dsize #define KI_SSZ ki_ssize #define KI_FLAG ki_flag #else #define KI_PID kp_proc.p_pid #define KI_PPID kp_eproc.e_ppid #define KI_PRI kp_proc.p_priority #define KI_NICE kp_proc.p_nice #define KI_COMM kp_proc.p_comm #define KI_STAT kp_proc.p_stat #define KI_UID kp_eproc.e_pcred.p_ruid #define KI_GID kp_eproc.e_pcred.p_rgid #define KI_EUID kp_eproc.e_pcred.p_svuid #define KI_EGID kp_eproc.e_pcred.p_svgid #define KI_SIZE XXX #define KI_RSS kp_eproc.e_vm.vm_rssize #define KI_TSZ kp_eproc.e_vm.vm_tsize #define KI_DSZ kp_eproc.e_vm.vm_dsize #define KI_SSZ kp_eproc.e_vm.vm_ssize #define KI_FLAG kp_eproc.e_flag #endif #ifndef DARWIN #define PROCFS_STATUS(status) \ ((((status) != SIGAR_OK) && !sigar->proc_mounted) ? \ SIGAR_EPROC_NOENT : status) static int get_koffsets(sigar_t *sigar) { int i; struct nlist klist[] = { { "_cp_time" }, { "_cnt" }, { NULL } }; if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } kvm_nlist(sigar->kmem, klist); if (klist[0].n_type == 0) { return errno; } for (i=0; ikoffsets[i] = klist[i].n_value; } return SIGAR_OK; } static int kread(sigar_t *sigar, void *data, int size, long offset) { if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } if (kvm_read(sigar->kmem, offset, data, size) != size) { return errno; } return SIGAR_OK; } #endif int sigar_os_open(sigar_t **sigar) { int mib[2]; int ncpu; size_t len; struct timeval boottime; #ifndef DARWIN struct stat sb; #endif len = sizeof(ncpu); mib[0] = CTL_HW; mib[1] = HW_NCPU; if (sysctl(mib, NMIB(mib), &ncpu, &len, NULL, 0) < 0) { return errno; } len = sizeof(boottime); mib[0] = CTL_KERN; mib[1] = KERN_BOOTTIME; if (sysctl(mib, NMIB(mib), &boottime, &len, NULL, 0) < 0) { return errno; } *sigar = malloc(sizeof(**sigar)); #ifdef DARWIN (*sigar)->mach_port = mach_host_self(); #else (*sigar)->kmem = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL); if (stat("/proc/curproc", &sb) < 0) { (*sigar)->proc_mounted = 0; } else { (*sigar)->proc_mounted = 1; } #endif get_koffsets(*sigar); (*sigar)->ncpu = ncpu; (*sigar)->boot_time = boottime.tv_sec; /* XXX seems off a bit */ (*sigar)->pagesize = getpagesize(); (*sigar)->last_pid = -1; (*sigar)->pinfo = NULL; return SIGAR_OK; } int sigar_os_close(sigar_t *sigar) { if (sigar->pinfo) { free(sigar->pinfo); } free(sigar); return SIGAR_OK; } char *sigar_os_error_string(int err) { switch (err) { case SIGAR_EPERM_KMEM: return "Failed to open /dev/kmem for reading"; case SIGAR_EPROC_NOENT: return "/proc filesystem is not mounted"; default: return NULL; } } int sigar_mem_get(sigar_t *sigar, sigar_mem_t *mem) { #ifdef DARWIN vm_statistics_data_t vmstat; kern_return_t status; mach_msg_type_number_t count = sizeof(vmstat) / sizeof(integer_t); #endif int mib[2]; int value; size_t len = sizeof(value); mib[0] = CTL_HW; mib[1] = HW_PAGESIZE; if (sysctl(mib, NMIB(mib), &sigar->pagesize, &len, NULL, 0) < 0) { return errno; } mib[1] = HW_PHYSMEM; if (sysctl(mib, NMIB(mib), &value, &len, NULL, 0) < 0) { return errno; } mem->total = value; #ifdef DARWIN status = host_statistics(sigar->mach_port, HOST_VM_INFO, (host_info_t)&vmstat, &count); if (status != KERN_SUCCESS) { return errno; } mem->free = vmstat.free_count * sigar->pagesize; #else len = sizeof(value); if (sysctlbyname("vm.stats.vm.v_free_count", &value, &len, NULL, 0) == -1) { mem->free = 0; /*XXX*/ } else { mem->free = value * sigar->pagesize; } #endif /* int status; struct vmmeter vmem; status = kread(sigar, &vmem, sizeof(vmem), sigar->koffsets[KOFFSET_VMMETER]); if (status != SIGAR_OK) { return status; } mem->total = vmem.v_page_count * sigar->pagesize; mem->free = vmem.v_free_count * sigar->pagesize; */ mem->used = mem->total - mem->free; mem->shared = SIGAR_FIELD_NOTIMPL; /*XXX*/ sigar_mem_calc_ram(sigar, mem); mem->actual_free = mem->free; mem->actual_used = mem->used; return SIGAR_OK; } #define SIGAR_FS_BLOCKS_TO_BYTES(buf, f) \ ((buf.f * (buf.f_bsize / 512)) >> 1) #define VM_DIR "/private/var/vm" #define SWAPFILE "swapfile" #define NL_SWAPBLIST 0 #define NL_SWDEVT 1 #define NL_NSWDEV 2 #define NL_DMMAX 3 #define SWI_MAXMIB 3 /* code in this function is based on FreeBSD 5.3 kvm_getswapinfo.c */ static int getswapinfo_sysctl(struct kvm_swap *swap_ary, int swap_max) { int ti, ttl; size_t mibi, len, size; int soid[SWI_MAXMIB]; struct xswdev xsd; struct kvm_swap tot; int unswdev, dmmax; /* XXX this can be optimized by using os_open */ size = sizeof(dmmax); if (sysctlbyname("vm.dmmax", &dmmax, &size, NULL, 0) == -1) { return errno; } mibi = SWI_MAXMIB - 1; if (sysctlnametomib("vm.swap_info", soid, &mibi) == -1) { return errno; } bzero(&tot, sizeof(tot)); for (unswdev = 0;; unswdev++) { soid[mibi] = unswdev; len = sizeof(xsd); if (sysctl(soid, mibi + 1, &xsd, &len, NULL, 0) == -1) { if (errno == ENOENT) { break; } return errno; } #if 0 if (len != sizeof(xsd)) { _kvm_err(kd, kd->program, "struct xswdev has unexpected " "size; kernel and libkvm out of sync?"); return -1; } if (xsd.xsw_version != XSWDEV_VERSION) { _kvm_err(kd, kd->program, "struct xswdev version " "mismatch; kernel and libkvm out of sync?"); return -1; } #endif ttl = xsd.xsw_nblks - dmmax; if (unswdev < swap_max - 1) { bzero(&swap_ary[unswdev], sizeof(swap_ary[unswdev])); swap_ary[unswdev].ksw_total = ttl; swap_ary[unswdev].ksw_used = xsd.xsw_used; swap_ary[unswdev].ksw_flags = xsd.xsw_flags; } tot.ksw_total += ttl; tot.ksw_used += xsd.xsw_used; } ti = unswdev; if (ti >= swap_max) { ti = swap_max - 1; } if (ti >= 0) { swap_ary[ti] = tot; } return SIGAR_OK; } int sigar_swap_get(sigar_t *sigar, sigar_swap_t *swap) { #ifdef DARWIN DIR *dirp; struct dirent *ent; char swapfile[SSTRLEN(VM_DIR) + SSTRLEN("/") + SSTRLEN(SWAPFILE) + 12]; struct stat swapstat; struct statfs vmfs; swap->used = swap->total = swap->free = 0; if (!(dirp = opendir(VM_DIR))) { return errno; } /* looking for "swapfile0", "swapfile1", etc. */ while ((ent = readdir(dirp))) { char *ptr = swapfile; if ((ent->d_namlen < SSTRLEN(SWAPFILE)+1) || /* n/a, see comment above */ (ent->d_namlen > SSTRLEN(SWAPFILE)+11)) /* ensure no overflow */ { continue; } if (!strnEQ(ent->d_name, SWAPFILE, SSTRLEN(SWAPFILE))) { continue; } /* sprintf(swapfile, "%s/%s", VM_DIR, ent->d_name) */ memcpy(ptr, VM_DIR, SSTRLEN(VM_DIR)); ptr += SSTRLEN(VM_DIR); *ptr++ = '/'; memcpy(ptr, ent->d_name, ent->d_namlen+1); if (stat(swapfile, &swapstat) < 0) { continue; } swap->used += swapstat.st_size; } closedir(dirp); if (statfs(VM_DIR, &vmfs) < 0) { return errno; } swap->total = SIGAR_FS_BLOCKS_TO_BYTES(vmfs, f_bfree) + swap->used; swap->free = swap->total - swap->used; #else struct kvm_swap kswap[1]; if (getswapinfo_sysctl(kswap, 1) != SIGAR_OK) { if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } if (kvm_getswapinfo(sigar->kmem, kswap, 1, 0) < 0) { return errno; } } if (kswap[0].ksw_total == 0) { swap->total = 0; swap->used = 0; swap->free = 0; return SIGAR_OK; } swap->total = kswap[0].ksw_total * sigar->pagesize; swap->used = kswap[0].ksw_used * sigar->pagesize; swap->free = swap->total - swap->used; #endif return SIGAR_OK; } int sigar_cpu_get(sigar_t *sigar, sigar_cpu_t *cpu) { #ifdef DARWIN kern_return_t status; mach_msg_type_number_t count = HOST_CPU_LOAD_INFO_COUNT; host_cpu_load_info_data_t cpuload; status = host_statistics(sigar->mach_port, HOST_CPU_LOAD_INFO, (host_info_t)&cpuload, &count); if (status != KERN_SUCCESS) { return errno; } cpu->user = cpuload.cpu_ticks[CPU_STATE_USER]; cpu->sys = cpuload.cpu_ticks[CPU_STATE_SYSTEM]; cpu->idle = cpuload.cpu_ticks[CPU_STATE_IDLE]; cpu->nice = cpuload.cpu_ticks[CPU_STATE_NICE]; cpu->wait = 0; /*N/A*/ cpu->total = cpu->user + cpu->nice + cpu->sys + cpu->idle; #else int status; long cp_time[CPUSTATES]; size_t size = sizeof(cp_time); /* try sysctl first, does not require /dev/kmem perms */ if (sysctlbyname("kern.cp_time", &cp_time, &size, NULL, 0) == -1) { status = kread(sigar, &cp_time, sizeof(cp_time), sigar->koffsets[KOFFSET_CPUINFO]); } else { status = SIGAR_OK; } if (status != SIGAR_OK) { return status; } cpu->user = cp_time[CP_USER]; cpu->nice = cp_time[CP_NICE]; cpu->sys = cp_time[CP_SYS]; cpu->idle = cp_time[CP_IDLE]; cpu->wait = cp_time[CP_INTR]; cpu->total = cpu->user + cpu->nice + cpu->sys + cpu->idle; #endif return SIGAR_OK; } int sigar_cpu_list_get(sigar_t *sigar, sigar_cpu_list_t *cpulist) { sigar_cpu_t *cpu; sigar_cpu_list_create(cpulist); /* XXX multi cpu */ cpu = &cpulist->data[cpulist->number++]; return sigar_cpu_get(sigar, cpu); } int sigar_uptime_get(sigar_t *sigar, sigar_uptime_t *uptime) { uptime->uptime = time(NULL) - sigar->boot_time; return SIGAR_OK; } int sigar_loadavg_get(sigar_t *sigar, sigar_loadavg_t *loadavg) { getloadavg(loadavg->loadavg, 3); return SIGAR_OK; } #ifndef KERN_PROC_PROC /* freebsd 4.x */ #define KERN_PROC_PROC KERN_PROC_ALL #endif int sigar_proc_list_get(sigar_t *sigar, sigar_proc_list_t *proclist) { #if 1 /*def DARWIN*/ /* XXX dont think this works on freebsd 4.x */ int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PROC, 0 }; int i, num; size_t len; struct kinfo_proc *proc; if (sysctl(mib, NMIB(mib), NULL, &len, NULL, 0) < 0) { return errno; } proc = malloc(len); if (sysctl(mib, NMIB(mib), proc, &len, NULL, 0) < 0) { free(proc); return errno; } num = len/sizeof(*proc); proclist->number = 0; proclist->size = num; proclist->data = malloc(sizeof(*(proclist->data)) * num); for (i=0; idata[proclist->number++] = proc[i].KI_PID; } free(proc); return SIGAR_OK; #else int i, num; struct kinfo_proc *proc; if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } proc = kvm_getprocs(sigar->kmem, KERN_PROC_PROC, 0, &num); sigar_proc_list_create(proclist); for (i=0; idata[proclist->number++] = proc[i].KI_PID; } #endif return SIGAR_OK; } int sigar_proc_stat_get(sigar_t *sigar, sigar_proc_stat_t *procstat) { int status = /* XXX optimize */ sigar_proc_count(sigar, &procstat->total); return status; } static int sigar_get_pinfo(sigar_t *sigar, sigar_pid_t pid) { int mib[4] = { CTL_KERN, KERN_PROC, KERN_PROC_PID, 0 }; size_t len = sizeof(*sigar->pinfo); time_t timenow = time(NULL); mib[3] = pid; if (sigar->pinfo == NULL) { sigar->pinfo = malloc(len); } if (sigar->last_pid == pid) { if ((timenow - sigar->last_getprocs) < SIGAR_LAST_PROC_EXPIRE) { return SIGAR_OK; } } sigar->last_pid = pid; sigar->last_getprocs = timenow; if (sysctl(mib, NMIB(mib), sigar->pinfo, &len, NULL, 0) < 0) { return errno; } return SIGAR_OK; } int sigar_proc_mem_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_mem_t *procmem) { #ifdef DARWIN mach_port_t task, self = mach_task_self(); kern_return_t status; task_basic_info_data_t info; mach_msg_type_number_t type = TASK_BASIC_INFO_COUNT; status = task_for_pid(self, pid, &task); if (status != KERN_SUCCESS) { return errno; } status = task_info(task, TASK_BASIC_INFO, (task_info_t)&info, &type); if (task != self) { mach_port_deallocate(self, task); } procmem->vsize = info.virtual_size; procmem->resident = info.resident_size; /*XXX*/ procmem->size = 1; /* 1 == let ant test pass for now */ procmem->rss = SIGAR_FIELD_NOTIMPL; procmem->share = SIGAR_FIELD_NOTIMPL; return SIGAR_OK; #else int status = sigar_get_pinfo(sigar, pid); struct kinfo_proc *pinfo = sigar->pinfo; if (status != SIGAR_OK) { return status; } procmem->size = procmem->vsize = (pinfo->KI_TSZ + pinfo->KI_DSZ + pinfo->KI_SSZ) * sigar->pagesize; procmem->resident = procmem->rss = pinfo->KI_RSS * sigar->pagesize; procmem->share = SIGAR_FIELD_NOTIMPL; return SIGAR_OK; #endif } int sigar_proc_cred_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_cred_t *proccred) { int status = sigar_get_pinfo(sigar, pid); struct kinfo_proc *pinfo = sigar->pinfo; if (status != SIGAR_OK) { return status; } proccred->uid = pinfo->KI_UID; proccred->gid = pinfo->KI_GID; proccred->euid = pinfo->KI_EUID; proccred->egid = pinfo->KI_EGID; return SIGAR_OK; } #ifdef DARWIN static int get_proc_times(sigar_pid_t pid, sigar_proc_time_t *time) { unsigned int count; time_value_t utime = {0, 0}, stime = {0, 0}; task_basic_info_data_t ti; task_thread_times_info_data_t tti; task_port_t task, self = mach_task_self(); kern_return_t status; status = task_for_pid(self, pid, &task); if (status != KERN_SUCCESS) { return errno; } count = TASK_BASIC_INFO_COUNT; status = task_info(task, TASK_BASIC_INFO, (task_info_t)&ti, &count); if (status != KERN_SUCCESS) { if (task != self) { mach_port_deallocate(self, task); } return errno; } count = TASK_THREAD_TIMES_INFO_COUNT; status = task_info(task, TASK_THREAD_TIMES_INFO, (task_info_t)&tti, &count); if (status != KERN_SUCCESS) { if (task != self) { mach_port_deallocate(self, task); } return errno; } time_value_add(&utime, &ti.user_time); time_value_add(&stime, &ti.system_time); time_value_add(&utime, &tti.user_time); time_value_add(&stime, &tti.system_time); time->user = utime.seconds; time->sys = stime.seconds; time->total = time->user + time->sys; return SIGAR_OK; } #endif #define READ_PROC_TIME(ptr, value) \ SIGAR_SKIP_SPACE(ptr); \ value = sigar_strtoul(ptr); \ ++ptr; \ value += (sigar_strtoul(ptr) / 1000000) int sigar_proc_time_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_time_t *proctime) { #ifdef DARWIN int status = sigar_get_pinfo(sigar, pid); struct kinfo_proc *pinfo = sigar->pinfo; if (status != SIGAR_OK) { return status; } if ((status = get_proc_times(pid, proctime)) != SIGAR_OK) { return status; } proctime->start_time = pinfo->kp_proc.p_starttime.tv_sec; #else char buffer[1024], *ptr=buffer; int status = SIGAR_PROC_FILE2STR(buffer, pid, "/status"); if (status != SIGAR_OK) { return PROCFS_STATUS(status); } ptr = sigar_skip_multiple_token(ptr, 7); READ_PROC_TIME(ptr, proctime->start_time); proctime->start_time *= 1000; /* convert to millis */ READ_PROC_TIME(ptr, proctime->user); READ_PROC_TIME(ptr, proctime->sys); proctime->total = proctime->user + proctime->sys; #endif return SIGAR_OK; } int sigar_proc_state_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_state_t *procstate) { int status = sigar_get_pinfo(sigar, pid); struct kinfo_proc *pinfo = sigar->pinfo; if (status != SIGAR_OK) { return status; } SIGAR_SSTRCPY(procstate->name, pinfo->KI_COMM); procstate->ppid = pinfo->KI_PPID; procstate->priority = pinfo->KI_PRI; procstate->nice = pinfo->KI_NICE; procstate->tty = SIGAR_FIELD_NOTIMPL; /*XXX*/ switch (pinfo->KI_STAT) { case SIDL: procstate->state = 'D'; break; case SRUN: procstate->state = 'R'; break; case SSLEEP: procstate->state = 'S'; break; case SSTOP: procstate->state = 'T'; break; case SZOMB: procstate->state = 'Z'; break; } return SIGAR_OK; } int sigar_proc_args_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_args_t *procargs) { #ifdef DARWIN return SIGAR_ENOTIMPL; #else return PROCFS_STATUS(sigar_procfs_args_get(sigar, pid, procargs)); #endif } int sigar_proc_env_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_env_t *procenv) { #ifdef DARWIN return SIGAR_ENOTIMPL; #else char **env; struct kinfo_proc *pinfo; int num; if (!sigar->kmem) { return SIGAR_EPERM_KMEM; } pinfo = kvm_getprocs(sigar->kmem, KERN_PROC_PID, pid, &num); if (!pinfo || (num < 1)) { return errno; } if (!(env = kvm_getenvv(sigar->kmem, pinfo, 9086))) { return errno; } while (*env) { char *ptr = *env++; char *val = strchr(ptr, '='); int klen, vlen, status; char key[128]; /* XXX is there a max key size? */ if (val == NULL) { /* not key=val format */ procenv->env_getter(procenv->data, ptr, strlen(ptr), NULL, 0); break; } klen = val - ptr; SIGAR_SSTRCPY(key, ptr); key[klen] = '\0'; ++val; vlen = strlen(val); status = procenv->env_getter(procenv->data, key, klen, val, vlen); if (status != SIGAR_OK) { /* not an error; just stop iterating */ break; } ptr += (klen + 1 + vlen + 1); } return SIGAR_OK; #endif } int sigar_proc_fd_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_fd_t *procfd) { return SIGAR_ENOTIMPL; } int sigar_proc_exe_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_exe_t *procexe) { #ifdef DARWIN return SIGAR_ENOTIMPL; #else int len; char name[1024]; procexe->cwd[0] = '\0'; procexe->root[0] = '\0'; (void)SIGAR_PROC_FILENAME(name, pid, "/file"); if ((len = readlink(name, procexe->name, sizeof(procexe->name)-1)) < 0) { return errno; } procexe->name[len] = '\0'; return SIGAR_OK; #endif } int sigar_proc_modules_get(sigar_t *sigar, sigar_pid_t pid, sigar_proc_modules_t *procmods) { return SIGAR_ENOTIMPL; } int sigar_thread_cpu_get(sigar_t *sigar, sigar_uint64_t id, sigar_thread_cpu_t *cpu) { return SIGAR_ENOTIMPL; } int sigar_os_fs_type_get(sigar_file_system_t *fsp) { char *type = fsp->sys_type_name; /* see sys/disklabel.h */ switch (*type) { case 'h': if (strEQ(type, "hfs")) { fsp->type = SIGAR_FSTYPE_LOCAL_DISK; } break; case 'u': if (strEQ(type, "ufs")) { fsp->type = SIGAR_FSTYPE_LOCAL_DISK; } break; } return fsp->type; } int sigar_file_system_list_get(sigar_t *sigar, sigar_file_system_list_t *fslist) { struct statfs *fs; int num, i; long len; if ((num = getfsstat(NULL, 0, MNT_NOWAIT)) < 0) { return errno; } len = sizeof(*fs) * num; fs = malloc(len); if ((num = getfsstat(fs, len, MNT_NOWAIT)) < 0) { return errno; } sigar_file_system_list_create(fslist); for (i=0; idata[fslist->number++]; SIGAR_SSTRCPY(fsp->dir_name, fs[i].f_mntonname); SIGAR_SSTRCPY(fsp->dev_name, fs[i].f_mntfromname); SIGAR_SSTRCPY(fsp->sys_type_name, fs[i].f_fstypename); sigar_fs_type_init(fsp); } return SIGAR_OK; } int sigar_file_system_usage_get(sigar_t *sigar, const char *dirname, sigar_file_system_usage_t *fsusage) { struct statfs buf; if (statfs(dirname, &buf) < 0) { return errno; } fsusage->total = SIGAR_FS_BLOCKS_TO_BYTES(buf, f_blocks); fsusage->free = SIGAR_FS_BLOCKS_TO_BYTES(buf, f_bfree); fsusage->avail = SIGAR_FS_BLOCKS_TO_BYTES(buf, f_bavail); fsusage->files = buf.f_files; fsusage->free_files = buf.f_files; fsusage->use_percent = sigar_file_system_usage_calc_used(sigar, fsusage); SIGAR_DISK_STATS_NOTIMPL(fsusage); return SIGAR_OK; } #ifdef DARWIN #define CTL_HW_FREQ "hw.cpufrequency" #else /* XXX FreeBSD 5.x+ only? */ #define CTL_HW_FREQ "machdep.tsc_freq" #endif int sigar_cpu_info_list_get(sigar_t *sigar, sigar_cpu_info_list_t *cpu_infos) { int i, mhz; unsigned long long value; size_t size; char model[128], vendor[128], *ptr; size = sizeof(value); if (!sysctlbyname(CTL_HW_FREQ, &value, &size, NULL, 0)) { mhz = (int)(value / 1000000); } else { mhz = SIGAR_FIELD_NOTIMPL; } size = sizeof(model); if (sysctlbyname("hw.model", &model, &size, NULL, 0) == -1) { strcpy(model, "Unknown"); } else if ((ptr = strchr(model, ' '))) { *ptr = '\0'; if (strstr(model, "Intel")) { SIGAR_SSTRCPY(vendor, "Intel"); } else if (strstr(model, "AMD")) { SIGAR_SSTRCPY(vendor, "AMD"); } else { SIGAR_SSTRCPY(vendor, "Unknown"); } SIGAR_SSTRCPY(model, ptr+1); } sigar_cpu_info_list_create(cpu_infos); for (i=0; incpu; i++) { sigar_cpu_info_t *info; SIGAR_CPU_INFO_LIST_GROW(cpu_infos); info = &cpu_infos->data[cpu_infos->number++]; #ifdef DARWIN SIGAR_SSTRCPY(info->vendor, "Apple"); SIGAR_SSTRCPY(info->model, "powerpc"); #else SIGAR_SSTRCPY(info->vendor, vendor); SIGAR_SSTRCPY(info->model, model); sigar_cpu_model_adjust(sigar, info); #endif info->mhz = mhz; info->cache_size = SIGAR_FIELD_NOTIMPL; } return SIGAR_OK; } int sigar_net_route_list_get(sigar_t *sigar, sigar_net_route_list_t *routelist) { sigar_net_route_list_create(routelist); return SIGAR_OK; } typedef enum { IFMSG_ITER_LIST, IFMSG_ITER_GET } ifmsg_iter_e; typedef struct { const char *name; ifmsg_iter_e type; union { sigar_net_interface_list_t *iflist; struct if_msghdr *ifm; } data; } ifmsg_iter_t; static int sigar_ifmsg_init(sigar_t *sigar) { int mib[] = { CTL_NET, PF_ROUTE, 0, AF_INET, NET_RT_IFLIST, 0 }; size_t len; if (sysctl(mib, NMIB(mib), NULL, &len, NULL, 0) < 0) { return errno; } if (sigar->ifconf_len < len) { sigar->ifconf_buf = realloc(sigar->ifconf_buf, len); sigar->ifconf_len = len; } if (sysctl(mib, NMIB(mib), sigar->ifconf_buf, &len, NULL, 0) < 0) { return errno; } return SIGAR_OK; } static int sigar_ifmsg_iter(sigar_t *sigar, ifmsg_iter_t *iter) { char *end = sigar->ifconf_buf + sigar->ifconf_len; char *ptr = sigar->ifconf_buf; if (iter->type == IFMSG_ITER_LIST) { sigar_net_interface_list_create(iter->data.iflist); } while (ptr < end) { char *name; struct sockaddr_dl *sdl; struct if_msghdr *ifm = (struct if_msghdr *)ptr; if (ifm->ifm_type != RTM_IFINFO) { break; } ptr += ifm->ifm_msglen; while (ptr < end) { struct if_msghdr *next = (struct if_msghdr *)ptr; if (next->ifm_type != RTM_NEWADDR) { break; } ptr += next->ifm_msglen; } sdl = (struct sockaddr_dl *)(ifm + 1); if (sdl->sdl_family != AF_LINK) { continue; } switch (iter->type) { case IFMSG_ITER_LIST: SIGAR_NET_IFLIST_GROW(iter->data.iflist); name = malloc(sdl->sdl_nlen+1); memcpy(name, sdl->sdl_data, sdl->sdl_nlen+1); iter->data.iflist->data[iter->data.iflist->number++] = name; break; case IFMSG_ITER_GET: if (strEQ(iter->name, sdl->sdl_data)) { iter->data.ifm = ifm; return SIGAR_OK; } } } switch (iter->type) { case IFMSG_ITER_LIST: return SIGAR_OK; case IFMSG_ITER_GET: default: return ENXIO; } } int sigar_net_interface_list_get(sigar_t *sigar, sigar_net_interface_list_t *iflist) { int status; ifmsg_iter_t iter; if ((status = sigar_ifmsg_init(sigar)) != SIGAR_OK) { return status; } iter.type = IFMSG_ITER_LIST; iter.data.iflist = iflist; return sigar_ifmsg_iter(sigar, &iter); } int sigar_net_interface_config_get(sigar_t *sigar, const char *name, sigar_net_interface_config_t *ifconfig) { int sock; int status; ifmsg_iter_t iter; struct if_msghdr *ifm; struct sockaddr_dl *sdl; struct ifreq ifr; if (sigar->ifconf_len == 0) { if ((status = sigar_ifmsg_init(sigar)) != SIGAR_OK) { return status; } } iter.type = IFMSG_ITER_GET; iter.name = name; if ((status = sigar_ifmsg_iter(sigar, &iter)) != SIGAR_OK) { return status; } if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0) { return errno; } ifm = iter.data.ifm; SIGAR_SSTRCPY(ifconfig->name, name); sdl = (struct sockaddr_dl *)(ifm + 1); sigar_hwaddr_format(ifconfig->hwaddr, (unsigned char *)LLADDR(sdl)); ifconfig->flags = ifm->ifm_flags; ifconfig->mtu = ifm->ifm_data.ifi_mtu; ifconfig->metric = ifm->ifm_data.ifi_metric; SIGAR_SSTRCPY(ifr.ifr_name, name); #define ifr_s_addr(ifr) \ ((struct sockaddr_in *)&ifr.ifr_addr)->sin_addr.s_addr if (!ioctl(sock, SIOCGIFADDR, &ifr)) { ifconfig->address = ifr_s_addr(ifr); } if (!ioctl(sock, SIOCGIFNETMASK, &ifr)) { ifconfig->netmask = ifr_s_addr(ifr); } if (ifconfig->flags & IFF_LOOPBACK) { ifconfig->destination = ifconfig->address; ifconfig->broadcast = 0; } else { if (!ioctl(sock, SIOCGIFDSTADDR, &ifr)) { ifconfig->destination = ifr_s_addr(ifr); } if (!ioctl(sock, SIOCGIFBRDADDR, &ifr)) { ifconfig->broadcast = ifr_s_addr(ifr); } } close(sock); return SIGAR_OK; } int sigar_net_interface_stat_get(sigar_t *sigar, const char *name, sigar_net_interface_stat_t *ifstat) { int status; ifmsg_iter_t iter; struct if_msghdr *ifm; if (sigar->ifconf_len == 0) { if ((status = sigar_ifmsg_init(sigar)) != SIGAR_OK) { return status; } } iter.type = IFMSG_ITER_GET; iter.name = name; if ((status = sigar_ifmsg_iter(sigar, &iter)) != SIGAR_OK) { return status; } ifm = iter.data.ifm; ifstat->rx_bytes = ifm->ifm_data.ifi_ibytes; ifstat->rx_packets = ifm->ifm_data.ifi_ipackets; ifstat->rx_errors = ifm->ifm_data.ifi_ierrors; ifstat->rx_dropped = ifm->ifm_data.ifi_iqdrops; ifstat->rx_overruns = SIGAR_FIELD_NOTIMPL; ifstat->rx_frame = SIGAR_FIELD_NOTIMPL; ifstat->tx_bytes = ifm->ifm_data.ifi_obytes; ifstat->tx_packets = ifm->ifm_data.ifi_opackets; ifstat->tx_errors = ifm->ifm_data.ifi_oerrors; ifstat->tx_collisions = ifm->ifm_data.ifi_collisions; ifstat->tx_dropped = SIGAR_FIELD_NOTIMPL; ifstat->tx_overruns = SIGAR_FIELD_NOTIMPL; ifstat->tx_carrier = SIGAR_FIELD_NOTIMPL; return SIGAR_OK; } int sigar_net_connection_list_get(sigar_t *sigar, sigar_net_connection_list_t *connlist, int flags) { return SIGAR_ENOTIMPL; }